若函數(shù)y=x2+(2a-1)x+1的單調(diào)遞減區(qū)間是(-∞,2],則實(shí)數(shù)a的值是(  )
分析:根據(jù)函數(shù)的單調(diào)遞減區(qū)間是(-∞,2],得到二次函數(shù)的對(duì)稱軸為x=2,即x=-
2a-1
2
=2,即可求得a的值.
解答:解:函數(shù)y=x2+(2a-1)x+1的單調(diào)遞減區(qū)間是(-∞,2],
所以函數(shù)的對(duì)稱軸為x=2,
則有x=-
2a-1
2
=2,解得a=-
3
2

故選A.
點(diǎn)評(píng):本題主要考察了二次函數(shù)的單調(diào)性,二次函數(shù)的單調(diào)性與它的開(kāi)口方向和對(duì)稱軸有關(guān).解題時(shí)要注意“單調(diào)減區(qū)間是I”與“在I上單調(diào)遞減”兩種說(shuō)法的區(qū)別.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、若函數(shù)y=x2-4x-2的定義域?yàn)閇0,m],值域?yàn)閇-6,-2],則m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義在[a,b]上的兩個(gè)函數(shù)f(x)與g(x),如果對(duì)于任意x∈[a,b],均有|f(x)-g(x)|≤1,則稱f(x)與g(x)在[a,b]上是接近的.若函數(shù)y=x2-4x+2與函數(shù)y=4x+m在區(qū)間[3,5]上是接近的,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=x2+2x+2在閉區(qū)間[m,1]上有最大值5,最小值1,則m的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中:
(1)方程x2+(a-3)x+a=0有一個(gè)正實(shí)根,一個(gè)負(fù)實(shí)根,則a<0;
(2)函數(shù)f(x)=lg(mx2+mx+1)的定義域?yàn)镽,則m的取值范圍是m∈(0,4);
(3)若函數(shù)y=
x2+ax+2
在區(qū)間(-∞,1]上是減函數(shù),則實(shí)數(shù)a∈[-3,-2];
(4)若函數(shù)f(3x+1)是偶函數(shù),則f(x)的圖象關(guān)于直線x=
1
3
對(duì)稱.
(5)若對(duì)于任意x∈(1,3)不等式x2-ax+2<0恒成立,則a>
11
3
;
其中的真命題是
(1),(3),(5)
(1),(3),(5)
(寫出所有真命題的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義在[a,b]上的兩個(gè)函數(shù)f(x)與g(x),如果對(duì)于任意x∈[a,b],均有|f(x)-g(x)|≤1,則稱f(x)與g(x)在[a,b]上是接近的.若函數(shù)y=x2-2x+2與函數(shù)y=2x+m在區(qū)間[1,3]上是接近的,則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案