7.曲線f(x)=acosx與曲線g(x)=x2+bx+1在交點(diǎn)(0,x0)有公切線,則b-a=-1.

分析 求出函數(shù)f(x)和g(x)的導(dǎo)函數(shù),然后由f(0)=g(0),f′(0)=g′(0)聯(lián)立方程組求解a,b的值,則答案可求.

解答 解:∵f(x)=acosx,g(x)=x2+bx+1,
∴f′(x)=-asinx,g′(x)=2x+b,
∵曲線f(x)=acosx與曲線g(x)=x2+bx+1在交點(diǎn)(0,x0)處有公切線,
∴f(0)=a=g(0)=1,且f′(0)=0=g′(0)=b,
即a=1,b=0.
∴b-a=-1.
故答案為-1.

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)的切線方程,函數(shù)在某點(diǎn)處的導(dǎo)數(shù),就是曲線上過該點(diǎn)的切線的斜率,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$\frac{7π}{3}$B.$8+\frac{π}{3}$C.$({4+\sqrt{2}})π$D.$({5+\sqrt{2}})π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若等腰△ABC的周長(zhǎng)為$4\sqrt{2}$,則△ABC腰AB上的中線CD的長(zhǎng)的最小值是$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=sin$\frac{π}{6}$xcos$\frac{π}{6}$x-$\sqrt{3}$sin2$\frac{π}{6}$x在區(qū)間[-1,a]上至少取得2個(gè)最大值,則正整數(shù)a的最小值是( 。
A.8B.9C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為3000元,2000元.甲、乙產(chǎn)品都需要在A、B兩種設(shè)備上加工,在每臺(tái)A、B設(shè)備上加工一件甲所需工時(shí)分別為1h,2h,加工一件乙設(shè)備所需工時(shí)分別為2h,1h.A、B兩種設(shè)備每月有效使用臺(tái)時(shí)數(shù)分別為400h和500h,分別用x,y表示計(jì)劃每月生產(chǎn)甲,乙產(chǎn)品的件數(shù).
(Ⅰ)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)問分別生產(chǎn)甲、乙兩種產(chǎn)品各多少件,可使收入最大?并求出最大收入.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某農(nóng)戶計(jì)劃種植黃瓜和韭菜,種植面積不超過50畝,投入資金不超過54萬元,假設(shè)種植黃瓜和韭菜的產(chǎn)量,成本和售價(jià)如下表:
 年產(chǎn)量/畝年種植成本/畝 每噸售價(jià) 
 黃瓜 4噸 1.2萬元 0.55萬元
 韭菜6噸  0.9萬元 0.3萬元
分別用x,y表示黃瓜和韭菜的種植面積(單位:畝)
(Ⅰ)用x,y列出滿足條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)問分別種植黃瓜和韭菜各對(duì)少畝能夠使一年的種植總利潤(rùn)(總利潤(rùn)=總銷售收入-總種植成本)最大?并求出此最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.一個(gè)幾何體,其三視圖如圖所示,則該幾何體的體積為$\frac{\sqrt{2}}{6}π$+$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在直角坐標(biāo)系xOy中,以原點(diǎn)為O極點(diǎn),以x軸正半軸為極軸,圓C的極坐標(biāo)方程為ρ=4$\sqrt{2}cos(θ+\frac{π}{4})$.
(1)將圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)過點(diǎn)P(2,0)作斜率為1直線l與圓C交于A,B兩點(diǎn),試求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前n項(xiàng)和Sn=n2,數(shù)列{bn}滿足b1=a1,bn+1(an+1-an)=bn
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列$\left\{{\frac{a_n}{b_n}}\right\}$的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案