19.已知等差數(shù)列{an}的通項(xiàng)公式為an=2n-47,那么Sn達(dá)到最小值時(shí)n的值為( 。
A.22B.23C.24D.25

分析 令an=2n-47≤0,解得n即可得出.

解答 解:令an=2n-47≤0,解得n$≤\frac{47}{2}$=23+$\frac{1}{2}$,
∴Sn達(dá)到最小值時(shí)n的值為23.
故選:B.

點(diǎn)評 本題考查了數(shù)列的單調(diào)性、前n項(xiàng)和性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在某學(xué)校一次考試的語文與歷史成績中,隨機(jī)抽取了25位考生的成績進(jìn)行分析,25位考生的語文成績已經(jīng)統(tǒng)計(jì)在莖葉圖中,歷史成績?nèi)缦拢?br />(Ⅰ)請根據(jù)數(shù)據(jù)在莖葉圖中完成歷史成績統(tǒng)計(jì);
(Ⅱ)請根據(jù)數(shù)據(jù)完成語文成績的頻數(shù)分布表及語文成績的頻率分布直方圖;

語文成績的頻數(shù)分布表:
語文成績分組[50,60)[60,70)[70,80)[80,90)[90,100)[100,110)[110,120]
頻數(shù)
(Ⅲ)設(shè)上述樣本中第i位考生的語文、歷史成績分別為xi,yi(i=1,2,…,25).通過對樣本數(shù)據(jù)進(jìn)行初步處理發(fā)現(xiàn):語文、歷史成績具有線性相關(guān)關(guān)系,得到:
$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}$xi=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(xi-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)2=5524,$\frac{4698}{5524}$≈0.85.
①求y關(guān)于x的線性回歸方程;
②并據(jù)此預(yù)測,當(dāng)某考生的語文成績?yōu)?00分時(shí),該生歷史成績.(精確到0.1分)
附:回歸直線方程的斜率和截距的最小二乘法估計(jì)公式分別為:
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}•{y}_{i}-\overline{n}x•\overline{y}}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}和{bn}的前n項(xiàng)和分別為Sn,Tn
(1)若{an}和{bn}分別是公差為d1,d2的等差數(shù)列,當(dāng)d1,d2滿足什么條件時(shí),{anbn}也為等差數(shù)列?
(2)如果{bn}為等差數(shù)列,且對一切正整數(shù)n,Sn-Tn=(an-bn)n恒成立,求證:{an}為等差數(shù)列;
(3)如果{an}為等差數(shù)列,且a1=-9,S9=S10;{bn}為等比數(shù)列,且b1=2,T3=14,求數(shù)列{$\frac{{a}_{n}}{_{n}}$}的前n項(xiàng)和,并求數(shù)列{$\frac{{a}_{n}}{_{n}}$}的最大項(xiàng)和最小項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知在△ABC中,tanB(sinA-sinC)=cosC-cosA,則△ABC為( 。
A.等腰三角形B.∠B=60°的三角形
C.等腰三角形或∠B=60°的三角形D.等腰直三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,其中an>0,d>0且$\sqrt{{a}_{11}+{a}_{15}}$=a13,若Sn=50,則n=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.5866除以7的余數(shù)是( 。
A.3B.2C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若不等式logax>(x-1)2恰有2個(gè)整數(shù)解,則實(shí)數(shù)a 的取值范圍為(  )
A.[$\root{9}{4}$,$\root{4}{3}$)B.(1,$\root{9}{4}$]C.[$\root{9}{4}$,$\root{7}{3}$]D.(1,$\root{4}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x+$\frac{{a}^{2}}{x}$-3.g(x)=x+lnx.其中a>0,F(xiàn)(x)=f(x)+g(x)
(1)若x=$\frac{1}{2}$是函數(shù)y=F(x)的極值點(diǎn),求實(shí)數(shù)a的值
(2)若函數(shù)y=f(x)在區(qū)間[1,2]上有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,長方體ABCD-A′B′C′D′中,AB=2$\sqrt{3}$,AD=2$\sqrt{3}$,AA′=2,
(1)求異面直線BC′和AD所成的角;
 (2)求證:直線BC′∥平面ADD′A′.

查看答案和解析>>

同步練習(xí)冊答案