分析 (1)根據(jù)題目條件先證明EB、EA、EF兩兩相互垂直,然后以E為原點(diǎn),以EB、EF、EA所在直線分別為x、y、z軸建立空間直角坐標(biāo)系,運(yùn)用向量數(shù)量積等于0,從而證明BD⊥EG;
(2)在(1)的基礎(chǔ)上,求出二面角的兩個(gè)半平面的法向量,利用法向量求二面角的平面角的余弦值.
解答 解:(1)證∵EF⊥平面ABE,AE?平面AEB,BE?平面AEB,
∴EF⊥AE,EF⊥BE,
又AE⊥EB,
∴FE,BE,AE兩兩垂直.
以點(diǎn)E為坐標(biāo)原點(diǎn),F(xiàn)E,BE,AE分別為X,Y,Z軸
建立如圖所示的空間直角坐標(biāo)系.
由已知得,A(0,0,2),B(2,0,0),
C(2,4,0),F(xiàn)(0,3,0),D(0,2,2),
G(2,2,0).
∴$\overrightarrow{EG}=(2,2,0)$,$\overrightarrow{BD}=(-2,2,2)$,
∴$\overrightarrow{DB}•\overrightarrow{EG}=-2×2+2×2+2×0=0$,
∴BD⊥EG.
(2)由已知得$\overrightarrow{EB}=(2,0,0)$是平面DEF的法向量.
設(shè)平面DEG的法向量為$\overrightarrow{n}=(x,y,z)$,
∵$\overrightarrow{ED}=(0,2,2),\overrightarrow{EG}=(2,2,0)$,
∴$\left\{\begin{array}{l}{\overrightarrow{ED}•\overrightarrow{n}=0}\\{\overrightarrow{EG}•\overrightarrow{n}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{y+z=0}\\{x+y=0}\end{array}\right.$,令x=1,得$\overrightarrow{n}=(1,-1,1)$.
設(shè)平面DEG與平面DEF所成銳二面角的大小為θ,
則cosθ=$\frac{|\overrightarrow{n}•\overrightarrow{EB}|}{|\overrightarrow{n}|•|\overrightarrow{EB}|}=\frac{\sqrt{3}}{3}$
∴平面EDG與平面DEF所成銳二面角的余弦值為$\frac{\sqrt{3}}{3}$.
點(diǎn)評(píng) 本題考查了,直線與平面垂直的性質(zhì),考查了運(yùn)用平面法向量求二面角的三角函數(shù)值,解答此題的關(guān)鍵是正確建立空間直角坐標(biāo)系,是中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽六安一中高一上國慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:選擇題
若函數(shù)的定義域是,則函數(shù)的定義域是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com