分析 (I)由已知可得$\frac{c}{a}$=$\frac{{\sqrt{6}}}{3}$,b=1,進(jìn)而可得a2=3,可得橢圓C的方程;
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),聯(lián)立直線與橢圓的方程,結(jié)合韋達(dá)定理及點(diǎn)到直線公式,可證得結(jié)論.
解答 (本小題滿分12分)
解:(Ⅰ)∵橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{6}}}{3}$,上頂點(diǎn)為(0,1).
∴$\frac{c}{a}$=$\frac{{\sqrt{6}}}{3}$,b=1,
即$\frac{{c}^{2}}{{a}^{2}}=\frac{{a}^{2}-1}{{a}^{2}}$=$\frac{6}{9}$,
解得:a2=3,
故橢圓C的方程為:$\frac{x^2}{3}+{y^2}=1$. …(4分)
證明:(Ⅱ)設(shè)A(x1,y1),B(x2,y2),
①若k存在,則設(shè)直線AB:y=kx+m.…(5分)
由$\left\{\begin{array}{l}y=kx+m\\ \frac{{x}^{2}}{3}+{y}^{2}=1\end{array}\right.$,得(1+3k2)x2+6kmx+3m2-3=0,
則x1+x2=-$\frac{6km}{1+3{k}^{2}}$,x1•x2=$\frac{3{m}^{2}-3}{1+3{k}^{2}}$ …(6分)
由OA⊥OB可知x1x2+y1y2=x1x2+(kx1+m)(kx2+m)
=(1+k2)x1x2+km(x1+x2)=0…(8分)
代入,得4m2=3k2+3
原點(diǎn)到直線AB的距離$d=\frac{|m|}{{\sqrt{{k^2}+1}}}=\frac{{\sqrt{3}}}{2}$.…(10分)
②當(dāng)AB的斜率不存在時(shí),|x1|=|y1|,可得|x1|=$\frac{\sqrt{3}}{2}$=d,依然成立. …(11分)
綜上,點(diǎn)O到直線AB的距離為定值$\frac{\sqrt{3}}{2}$. …(12分)
點(diǎn)評 本題考查的知識點(diǎn)是橢圓的標(biāo)準(zhǔn)方程,橢圓的性質(zhì),點(diǎn)到直線的距離,直線與橢圓的位置關(guān)系,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ab=0 | B. | a+b=0 | C. | a2+b2=0 | D. | a=b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com