(5)已知函數(shù)f(x)=sin()()的最小正周期為,則該函數(shù)的圖象

A 關(guān)于點(,0)對稱        B 關(guān)于直線x=對稱

C 關(guān)于點(,0)對稱        D 關(guān)于直線x=對稱

答案:A

解析:由題意知ω=2,得f(x)=sin(2x+),將x=代入,得f()=0,∴A正確.

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+12-x
,x∈[3,5]
,
(1)判斷函數(shù)的單調(diào)性,并用定義證明;   
(2)求函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)f(x)=4cos(2x+
π
3
)
的一條對稱軸是直線x=-
12

②已知函數(shù)f(x)=min{sinx,cosx},則f(x)的值域為[-1,
2
2
]
;
③若α,β均為第一象限角,且α>β,則sinα>sinβ.
其中真命題的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省、岳陽縣一中高三11月聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)(第一問8分,第二問5分)

已知函數(shù)f(x)=2lnxg(x)=ax2+3x.

(1)設(shè)直線x=1與曲線yf(x)和yg(x)分別相交于點P、Q,且曲線yf(x)和yg(x)在點P、Q處的切線平行,若方程f(x2+1)+g(x)=3xk有四個不同的實根,求實數(shù)k的取值范圍;

(2)設(shè)函數(shù)F(x)滿足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問是否存在實數(shù)a,使得當(dāng)x∈(0,1]時,F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆湖南省澧縣一中、岳陽縣一中高三11月聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)(第一問8分,第二問5分)
已知函數(shù)f(x)=2lnxg(x)=ax2+3x.
(1)設(shè)直線x=1與曲線yf(x)和yg(x)分別相交于點P、Q,且曲線yf(x)和yg(x)在點P、Q處的切線平行,若方程f(x2+1)+g(x)=3xk有四個不同的實根,求實數(shù)k的取值范圍;
(2)設(shè)函數(shù)F(x)滿足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問是否存在實數(shù)a,使得當(dāng)x∈(0,1]時,F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案