雙曲線數(shù)學(xué)公式的離心率 e=2,則k的值是________.

-5
分析:通過(guò)雙曲線方程直接利用離心率的求法,求解即可.
解答:因?yàn)殡p曲線,
所以a2=k+8,b2=9,所以c2=k+17,因?yàn)殡p曲線的離心率 e=2,
所以,解得k=-5,
故答案為:-5.
點(diǎn)評(píng):本題考查雙曲線的離心率的求法,雙曲線的基本性質(zhì)的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)F1、F2分別是雙曲線
x2
a2
-
y2
b2
=1
的左、右焦點(diǎn),過(guò)F1且垂直于x軸的直線與雙曲線交于A、B兩點(diǎn),若△ABF2為銳角三角形,則該雙曲線的離心率e的取值范圍是( 。
A、(1,+∞)
B、(1,
3
)
C、(1,2)
D、(1,1+
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)F1、F2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn),過(guò)F1垂直于x軸的直線與雙曲線交于A、B兩點(diǎn),若△ABF2為銳角三角形,則雙曲線的離心率e的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•南京二模)已知雙曲線
x2
a2
-y2=1
的一條漸近線方程為x-2y=0,則該雙曲線的離心率e=
5
2
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•湖北模擬)已知點(diǎn)F1、F2分別是雙曲線
x2
a2
-
y2
b2
=1的左、右焦點(diǎn),過(guò)F1且垂直于x軸的直線與雙曲線交于A、B兩點(diǎn),若A、B和雙曲線的一個(gè)頂點(diǎn)構(gòu)成的三角形為銳角三角形,則該雙曲線的離心率e的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,P為雙曲線上任一點(diǎn),已知|
PF1
|•|
PF2
|的最小值為m.當(dāng)
c2
3
≤m≤
c2
2
時(shí),其中c=
a2+b2
,則雙曲線的離心率e的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案