已知向量=(1,2),=(2,-2).
(1)設(shè)=4+,求;
(2)若垂直,求λ的值.
【答案】分析:(1)由向量=(1,2),=(2,-2),知=4+=(4,8)+(2,-2)=(6,6),由此能求出(
(2)=(1+2λ,2-2λ),由垂直,知1+2λ+2(2-2λ)=0,由此能求出λ的值.
解答:解:(1)∵向量=(1,2),=(2,-2),
=4+=(4,8)+(2,-2)=(6,6),
∴(=(12-12)==
(2)=(1+2λ,2-2λ),
垂直,
∴1+2λ+2(2-2λ)=0,
解得
點評:本題考查平面向量的坐標運算,是基礎(chǔ)題.解題時要認真審題,注意數(shù)量積判斷兩個平面向量的垂直關(guān)系的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(x,2),則向量
a
+2
b
與2
a
-
b
( 。
A、垂直的必要條件是x=-2
B、垂直的充要條件是x=
7
2
C、平行的充分條件是x=-2
D、平行的充要條件是x=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(x,1),若
a
b
,則實數(shù)x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(sinθ,cosθ),θ∈(0,π).
(1)若
a
b
,求sinθ及cosθ;
(2)若
a
.
b
,求tan2θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(2,-2).
(1)設(shè)
c
=4
a
+
b
,求(
b
c
a
;
(2)若
a
b
a
垂直,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(cosα,sinα)
,設(shè)
m
=
a
+t
b
(t為實數(shù)).
(1)若
a
b
共線,求tanα的值;
(2)若α=
π
4
,求當(dāng)|
m
|取最小值時實數(shù)t的值.

查看答案和解析>>

同步練習(xí)冊答案