實(shí)數(shù)x,y滿足不等式組
2x-y≥0
x+y-2≥0
6x+3y≤18
,且z=ax+y(a>0)取最小值的最優(yōu)解有無窮多個(gè),則實(shí)數(shù)a的值是
 
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,要使目標(biāo)函數(shù)的最優(yōu)解有無數(shù)個(gè),則目標(biāo)函數(shù)和其中一條直線平行,然后根據(jù)條件即可求出a的值.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=ax+y(a>0)得y=-ax+z,
∵a>0,∴目標(biāo)函數(shù)的斜率k=-a<0.
平移直線y=-ax+z,
由圖象可知當(dāng)直線y=-ax+z和直線x+y-2=0平行時(shí),此時(shí)目標(biāo)函數(shù)取得最小值時(shí)最優(yōu)解有無數(shù)多個(gè),
此時(shí)-a=-1,即a=1.
故答案為:1.
點(diǎn)評:本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃問題中的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在銳角三角形ABC中,BC=1,AB=
2
,sin(A+C)=
14
4
,
(Ⅰ)求AC的值;
(Ⅱ)求sin(2A-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
x+1
的反函數(shù)為f-1(x),則f-1(-2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的網(wǎng)格是邊長為1的小正方形,在其上用粗線畫出了某多面體的三視圖,則該多面體的全面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x∈R,則函數(shù)y=|x|+
2-x2
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的中心、右焦點(diǎn)、右頂點(diǎn)及右準(zhǔn)線與x軸的交點(diǎn)依次為O、F、G、H,當(dāng)
|FG|
|OH|
取得最大值時(shí)橢圓的離心率為
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,當(dāng)輸入n=8時(shí),則輸出的S值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合U=R,A={y|y=2x-1,x∈R},則∁UA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓(x+
1
2
2+(y+1)2=
1
2
與圓(x-sinθ)2+(y-1)2=
1
16
(θ為銳角)的位置關(guān)系是( 。
A、相離B、外切C、內(nèi)切D、相交

查看答案和解析>>

同步練習(xí)冊答案