已知數(shù)列{an}是等差數(shù)列,a2=3,a4+a5+a6=27,Sn為數(shù)列{an}的前n項(xiàng)和
(1)求an和Sn;      (2)若bn=a2n,求數(shù)列{bn}的前n項(xiàng)和Tn
分析:(1)知a4+a5+a6=27可求得a5又知a2=3可求得公差,可求得通項(xiàng)公式,可求得a1=1,由等差數(shù)列的前n項(xiàng)和公式求得Sn;
(2)由an求得bn,把bn的項(xiàng)分組相加,前一項(xiàng)放一起,得到等比數(shù)列的和,后一項(xiàng)放一起得到常數(shù)相加,可求出結(jié)果.
解答:解:(1)由已知a4+a5+a6=27,可得3a5=27
解得a5=9.(1分)
設(shè)等差數(shù)列的公差為d,則a5-a2=3d=6,解得d=2..(2分)
∴an=a2+(n-2)d=3+(n-2)×2=2n-1..(4分)
sn=
n(a1+an)
2
=
n(1+2n-1)
2
=n2

綜上,an=2n-1,sn=n2(6分)
(2)∵bn=a2n=2n+1-1.(8分)
∴Tn=(22-1)+(23-1)+…+(2n+1-1)..(9分)
=(22+23++2n+1)-n
=2n+2-n-4
即Tn=2n+2-n-4.(12分)
點(diǎn)評:求an有兩種方法,一種是an=am+(n-m)d,另一種利用通項(xiàng)公式,求首項(xiàng)和公差;本題主要考查數(shù)列求和的分組法、等差數(shù)列通項(xiàng)公式和前n項(xiàng)和公式.考查學(xué)生的運(yùn)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義一個“等積數(shù)列”:在一個數(shù)列中,如果每一項(xiàng)與它后一項(xiàng)的積都是同一常數(shù),那么這個數(shù)列叫“等積數(shù)列”,這個常數(shù)叫做這個數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=2,公積為5,則這個數(shù)列的前n項(xiàng)和Sn的計(jì)算公式為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一個數(shù)列中,如果?n∈N*,都有an•an+1•an+2=k(k為常數(shù)),那么這個數(shù)列叫做等積數(shù)列,k叫做這個數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=1,a2=3,公積為27,則a1+a2+a3+…+a18=
78
78

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義“等積數(shù)列”:在一個數(shù)列中,如果每一個項(xiàng)與它的后一項(xiàng)的積都為同一個常數(shù),那末這個數(shù)列叫做等積數(shù)列,這個常數(shù)叫做該數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=2,公積為5,Tn為數(shù)列{an}前n項(xiàng)的積,則T2011=
51006
2
51006
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們對數(shù)列作如下定義,如果?n∈N*,都有anan+1an+2=k(k為常數(shù)),那么這個數(shù)列叫做等積數(shù)列,k叫做這個數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=1,a2=2,公積為6,則a1+a2+a3+…+a9=
18
18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列的定義為:在一個數(shù)列中,從第二項(xiàng)起,如果每一項(xiàng)與它的前一項(xiàng)的差都為同一個常數(shù),那么這個數(shù)列叫做等差數(shù)列,這個常數(shù)叫做該數(shù)列的公差.
(1)類比等差數(shù)列的定義給出“等和數(shù)列”的定義;
(2)已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,求 a18的值,并猜出這個數(shù)列的通項(xiàng)公式(不要求證明).

查看答案和解析>>

同步練習(xí)冊答案