【題目】為建立健全國家學(xué)生體質(zhì)健康監(jiān)測評價機制,激勵學(xué)生積極參加身體鍛煉,教育部印發(fā)《國家學(xué)生體質(zhì)健康標準(2014年修訂)》,要求各學(xué)校每學(xué)年開展覆蓋本校各年級學(xué)生的《標準》測試工作.為做好全省的迎檢工作,某市在高三年級開展了一次體質(zhì)健康模擬測試(健康指數(shù)滿分100分),并從中隨機抽取了200名學(xué)生的數(shù)據(jù),根據(jù)他們的健康指數(shù)繪制了如圖所示的頻率分布直方圖.
(1)估計這200名學(xué)生健康指數(shù)的平均數(shù)和樣本方差(同一組數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)由頻率分布直方圖知,該市學(xué)生的健康指數(shù)近似服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.
①求;
②已知該市高三學(xué)生約有10000名,記體質(zhì)健康指數(shù)在區(qū)間的人數(shù)為,試求.
附:參考數(shù)據(jù),
若隨機變量服從正態(tài)分布,則,,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A,B是拋物線上關(guān)于軸對稱的兩點,點E是拋物線C的準線與x軸的交點.
(1)若是面積為4的直角三角形,求拋物線C的方程;
(2)若直線BE與拋物線C交于另一點D,證明:直線AD過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,若點A為函數(shù)上的任意一點,點B為函數(shù)上的任意一點.
(1)求A,B兩點之間距離的最小值;
(2)若A,B為函數(shù)與函數(shù)公切線的兩個切點,求證:這樣的點B有且僅有兩個,且滿足條件的兩個點B的橫坐標互為倒數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:極坐標與參數(shù)方程]
在直角坐標系中,曲線的參數(shù)方程為(是參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的極坐標方程和曲線的直角坐標方程;
(2)若射線 與曲線交于,兩點,與曲線交于,兩點,求取最大值時的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,正方形與梯形所在的平面互相垂直,, ,,.
(1)求證:平面;
(2)求證:平面平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,,為的零點:且恒成立,在區(qū)間上有最小值無最大值,則的最大值是( )
A. 11B. 13C. 15D. 17
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)證明:對任意的,存在唯一的,使;
(3)設(shè)(2)中所確定的關(guān)于的函數(shù)為,證明:當時,有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)是偶函數(shù),求實數(shù)的值;
(2)若函數(shù),關(guān)于的方程有且只有一個實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線:(為參數(shù)).以原點為極點,軸的正半軸為極軸建立極坐標系,曲線:.
(1)求的普通方程和的直角坐標方程;
(2)若曲線與交于,兩點,,的中點為,點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com