已知函數(shù)f(x)=
a•2x+a-1
2x+1

(1)確定a的值,使f(x)為奇函數(shù);
(2)在(1)的條件下,解關于x的不等式f[loga(x+1)]+f[loga
1
3x-5
)]>0.
分析:(1)根據(jù)函數(shù)奇偶性的定義和性質確定a的值;
(2)根據(jù)函數(shù)奇偶性和單調性的性質將不等式進行轉化求解.
解答:解:(1)∵f(x)為奇函數(shù),
∴f(-x)=-f(x),
a-
1
2-x+1
=-a+
1
2x+1
,
2a=
1
2x+1
+
1
2-x+1
=
1
2x+1
+
2x
2x+1
=1
,
a=
1
2

f(x)=
1
2
-
1
2x+1
;
(2)f(x)定義域為(-∞,+∞),原函數(shù)即f(x)=
1
2
-
1
2x+1
,易得f(x)為R上的增函數(shù).
由f[loga(x+1)]+f[loga
1
3x-5
)]>0.
得f[loga(x+1)]>-f[loga
1
3x-5
)]=f[-loga
1
3x-5
)]=f([loga(3x-5)],
∵f(x)為R上的增函數(shù).
∴l(xiāng)oga(x+1)>loga(3x-5),
若a>1,則
x+1>3x-5
3x-5>0
,解得
5
3
<x<3

若0<a<1,則
x+1<3x-5
x+1>0
,解得x>3.
綜上:a>1,不等式的解集為{x|
5
3
<x<3
}.
當0<a<1,不等式的解集為{x|x>3}.
點評:本題主要考查指數(shù)函數(shù)和對數(shù)函數(shù)的性質,利用函數(shù)的奇偶性和單調性之間的關系是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-
12x+1

(1)求證:不論a為何實數(shù)f(x)總是為增函數(shù);
(2)確定a的值,使f(x)為奇函數(shù);
(3)當f(x)為奇函數(shù)時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)圖象經過點Q(8,6).
(1)求a的值,并在直線坐標系中畫出函數(shù)f(x)的大致圖象;
(2)求函數(shù)f(t)-9的零點;
(3)設q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-
1
2x+1
,若f(x)為奇函數(shù),則a=( 。
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a(x-1)x2
,其中a>0.
(I)求函數(shù)f(x)的單調區(qū)間;
(II)若直線x-y-1=0是曲線y=f(x)的切線,求實數(shù)a的值;
(III)設g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定義域;
(2)若f(x)為奇函數(shù),求a的值;
(3)考察f(x)在定義域上單調性的情況,并證明你的結論.

查看答案和解析>>

同步練習冊答案