A. | 32 | B. | 16 | C. | 8 | D. | 4 |
分析 求得雙曲線C一條漸近線方程為y=$\frac{a}$x,運(yùn)用點(diǎn)到直線的距離公式,結(jié)合勾股定理和三角形的面積公式,化簡(jiǎn)整理解方程可得a=8,進(jìn)而得到雙曲線的實(shí)軸長(zhǎng).
解答 解:設(shè)F2(c,0),雙曲線C一條漸近線方程為y=$\frac{a}$x,
可得|F2M|=$\frac{bc}{\sqrt{{a}^{2}+^{2}}}$=b,
即有|OM|=$\sqrt{{c}^{2}-^{2}}$=a,
由S${\;}_{△OM{F}_{2}}$=16,可得$\frac{1}{2}$ab=16,
即ab=32,又a2+b2=c2,且$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$,
解得a=8,b=4,c=4$\sqrt{5}$,
即有雙曲線的實(shí)軸長(zhǎng)為16.
故選:B
點(diǎn)評(píng) 本題考查雙曲線的方程和性質(zhì),注意運(yùn)用點(diǎn)到直線的距離公式和離心率公式,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{5}$ | B. | 1 | C. | $\sqrt{5}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f($\frac{π}{4}$)=-1 | B. | f(x)的周期為$\frac{π}{2}$ | C. | ω的最大值為4 | D. | f($\frac{3π}{4}$)=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}$),k∈Z | B. | (kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$),k∈Z | ||
C. | (kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$),k∈Z | D. | (kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$),k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{4}$ | B. | -$\frac{5}{6}$ | C. | 1 | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | -1 | C. | 1 | D. | $\frac{{\sqrt{3}-1}}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com