12.在矩形ABCD中,AB=2$\sqrt{3}$,BC=2,現(xiàn)把矩形ABCD沿對角線AC折起,當以A,B,C,D四點為頂點的三棱錐體積最大時,直線BD和平面ABC所成的角的正弦值為( 。
A.$\frac{\sqrt{21}}{5}$B.$\frac{\sqrt{21}}{7}$C.$\frac{\sqrt{30}}{10}$D.$\frac{\sqrt{70}}{10}$

分析 當平面ABC⊥平面ADC時,以A,B,C,D四點為頂點的三棱錐體積最大時,由已知求出AC=4,∠BAC=30°,過D作DE⊥AC,交AC于E,連結(jié)BE,則DBE是直線BD和平面ABC所成的角,由此能求出直線BD和平面ABC所成的角的正弦值.

解答 解:∵在矩形ABCD中,現(xiàn)把矩形ABCD沿對角線AC折起,
∴當平面ABC⊥平面ADC時,以A,B,C,D四點為頂點的三棱錐體積最大時,
∵AB=2$\sqrt{3}$,BC=2,∴AC=$\sqrt{12+4}$=4,∴∠BAC=30°,
過D作DE⊥AC,交AC于E,連結(jié)BE,
∵平面ABC⊥平面ADC,∴DE⊥平面ABC,
∴∠DBE是直線BD和平面ABC所成的角,
∵DE=$\frac{AD×DC}{AC}$=$\sqrt{3}$,∴$AE=\sqrt{A{D}^{2}-D{E}^{2}}$=$\sqrt{4-3}$=1,
∴BE=$\sqrt{B{A}^{2}+A{E}^{2}-2×BA×AE×cos∠BAC}$=$\sqrt{12+1-2×2\sqrt{3}×1×\frac{\sqrt{3}}{2}}$=$\sqrt{7}$,
∴BD=$\sqrt{B{E}^{2}+D{E}^{2}}$=$\sqrt{7+3}$=$\sqrt{10}$,
∴sin∠DBE=$\frac{BE}{BD}=\frac{\sqrt{7}}{\sqrt{10}}$=$\frac{\sqrt{70}}{10}$.
故選:D.

點評 本題考查線面角的正弦值的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知1-sinx=2a.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=sin($\frac{π}{3}-\frac{x}{2}$)的最小正周期是( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.cos65°•sin85°+sin65°•sin5°=$\frac{1}{2}$,sin15°•cos15°=$\frac{1}{4}$,2cos2$\frac{π}{12}$-1=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.對某電子元件進行壽命追蹤調(diào)查,情況如下.
壽命(h)100~200200~300300~400400~500500~600
個  數(shù)2030804030
(1)畫出頻率分布直方圖;
(2)估計電子元件壽命在400h以上的在總體中占的比例;
(3)估計電子元件壽命的眾數(shù),中位數(shù)及平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若f′(x0)=1,則$\underset{lim}{k→0}$$\frac{f({x}_{0}-k)-f({x}_{0})}{2k}$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.正三棱錐V-ABC的底面邊長是a,側(cè)面與底面成60°的二面角.求
(1)棱錐的側(cè)棱長;
(2)側(cè)棱與底面所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)復(fù)數(shù)z滿足(1-3i)z=3+i,則z=( 。
A.一iB.iC.$\frac{3}{5}$-$\frac{4}{5}$iD.$\frac{3}{5}$+$\frac{4}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若直線l的方向向量與平面α的法向量的夾角等于120°,則直線l與平面α所成的角等于( 。
A.120°B.60°C.30°D.60°或30°

查看答案和解析>>

同步練習(xí)冊答案