命題“存在x∈R,使2x+x2≤1”的否定是( 。
A、對任意x∈R,有2x+x2>1
B、對任意x∈R,有2x+x2≤1
C、存在x∈R,使2x+x2>1
D、不存在x∈R,使2x+x2≤1
考點:命題的否定
專題:簡易邏輯
分析:直接利用特稱命題的否定是全稱命題寫出結(jié)果即可.
解答: 解:因為特稱命題的否定是全稱命題,所以,命題“存在x∈R,使2x+x2≤1”的否定是:對任意x∈R,有2x+x2>1.
故選:A.
點評:本題考查命題的否定特稱命題與全稱命題的否定關系,基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z滿足
(6+z)-(8+z)i
z
=4+3i(其中i為虛數(shù)單位),則|z|=( 。
A、2B、1C、5D、10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

cos510°的值為(  )
A、
1
2
B、-
1
2
C、-
3
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a=log3π,b=log2
3
,c=log3
2
,則(  )
A、a>c>b
B、b>c>a
C、b>a>c
D、a>b>c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于任意的α∈R,sin2α=( 。
A、2sinα
B、2sinαcosα
C、2cosα
D、cos2α-sin2α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x||x-1|<2},集合B={x|lnx>0},則集合A∩B=( 。
A、(1,3)
B、(0,3)
C、(-1,3)
D、(-1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-2x+2,x∈[t,t+1]的最小值為g(t)
(1)求函數(shù)g(t)的解析式.
(2)若對任意的t,f(x)-m>0在x∈[t,t+1]上恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,已知a1=3,an-1-an=
1
3
nan-1an,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在菱形ABCD中,∠BAD=120°,則下列說法中錯誤說法的個數(shù)是( 。
①圖中所標出的向量中與
AB
相等的向量只有1個(不含
AB
本身)
②圖中所標出的向量與
AB
的模相等的向量有4個(不含
AB
本身)
BD
的長度恰為
DA
長度的
3

CB
DA
不共線.
A、4B、3C、1D、0

查看答案和解析>>

同步練習冊答案