18.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2.
(1)若$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,求|$\overrightarrow{a}$+$\overrightarrow$|的值;
(2)若($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$,求$\overrightarrow{a}$與$\overrightarrow$的夾角.

分析 (1)計(jì)算($\overrightarrow{a}+\overrightarrow$)2,開(kāi)方即可得|$\overrightarrow{a}+\overrightarrow$|;
(2)由($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{a}$=0可得$\overrightarrow{a}•\overrightarrow$=-1,代入夾角公式計(jì)算即可.

解答 解:(1)$\overrightarrow{a}•\overrightarrow$=1×2×cos60°=1,
∴($\overrightarrow{a}+\overrightarrow$)2=${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}•\overrightarrow$+${\overrightarrow}^{2}$=1+2+4=7,
∴|$\overrightarrow{a}+\overrightarrow$|=$\sqrt{7}$.
(2)若($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$,則($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{a}$=${\overrightarrow{a}}^{2}$+$\overrightarrow{a}•\overrightarrow$=0,
∴$\overrightarrow{a}•\overrightarrow$=-${\overrightarrow{a}}^{2}$=-1,
∴cos<$\overrightarrow{a},\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=-$\frac{1}{2}$,
∵0°≤<$\overrightarrow{a},\overrightarrow$>≤180°
∴$\overrightarrow{a}$與$\overrightarrow$的夾角為120°.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積公式,夾角與模長(zhǎng)計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)y=sin(ωx+φ)(ω>0,-π<φ≤π)的圖象如圖所示,則φ=$\frac{9}{10}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知三條直線2x-3y+1=0,4x+3y+5=0,mx-y-1=0不能構(gòu)成三角形,則實(shí)數(shù)m的取值集合為(  )
A.{-$\frac{4}{3}$,$\frac{2}{3}$}B.{$\frac{4}{3}$,-$\frac{2}{3}$}C.{-$\frac{4}{3}$,$\frac{2}{3}$,$\frac{4}{3}$}D.{-$\frac{4}{3}$,-$\frac{2}{3}$,$\frac{2}{3}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知$sinα=\frac{1}{3}$,則$sin\frac{α}{2}+cos\frac{α}{2}$=±$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知點(diǎn)M,N是拋物線y=4x2上不同的兩點(diǎn),F(xiàn)為拋物線的焦點(diǎn),且滿足∠MFN=135°,弦MN的中點(diǎn)P到直線l:y=-$\frac{1}{16}$的距離記為d,|MN|2=λ•d2,則λ的最小值為2+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)集合A={x|-1≤x≤2},B={x|x2-(2m+1)x+2m<0}.
(1)當(dāng)m<$\frac{1}{2}$時(shí),把集合B用區(qū)間表達(dá);
(2)若A∪B=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,曲線C1:$\left\{\begin{array}{l}x=rcosθ\\ y=rsinθ\end{array}$(θ為參數(shù),0<r<4),曲線C2:$\left\{\begin{array}{l}x=2+2\sqrt{2}cosθ\\ y=2+2\sqrt{2}sinθ\end{array}$(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,射線$θ=α(0<α<\frac{π}{2})$與曲線C1交于N點(diǎn),與曲線C2交于O,P兩點(diǎn),且|PN|最大值為2$\sqrt{2}$.
(1)將曲線C1與曲線C2化成極坐標(biāo)方程,并求r的值;
(2)射線θ=α+$\frac{π}{4}$與曲線C1交于Q點(diǎn),與曲線C2交于O,M兩點(diǎn),求四邊形MPNQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{x}{lnx}$+ax,x>1.
(1)若函數(shù)f(x)在$x={e^{\frac{1}{2}}}$處取得極值,求a的值;
(2)若方程(2x-m)lnx+x=0在(1,e]上有兩個(gè)不等實(shí)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則函數(shù)的解析式為y=$\sqrt{2}$sin(2x+$\frac{π}{3}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案