15.設(shè)等比數(shù)列{an}的公比為q,前n項(xiàng)和為Sn,且a1>0,若S2>2a3,則q的取值范圍是( 。
A.$(-1,0)∪(0,\frac{1}{2})$B.$(-\frac{1}{2},0)∪(0,1)$C.$(-1,\frac{1}{2})$D.$(-\frac{1}{2},1)$

分析 根據(jù)題意,分析易得a1+a2>2a3,由等比數(shù)列通項(xiàng)公式可得a1+a1q>2a1q2,結(jié)合a1>0,可以變形1+q>2q2;解可得q的范圍,即可得答案.

解答 解:根據(jù)題意,對(duì)于等比數(shù)列{an},有S2>2a3,
則有a1+a2>2a3,即a1+a1q>2a1q2;
又由a1>0,則有1+q>2q2
解可得-$\frac{1}{2}$<q<1,
又由q≠0,
則q的取值范圍是(-$\frac{1}{2}$,0)∪(0,1);
故選:B.

點(diǎn)評(píng) 本題考查等比數(shù)列的前n項(xiàng)和,注意運(yùn)用本公式時(shí)注意公比q是否為1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.給出下列命題:
①函數(shù)y=sin(x+$\frac{π}{4}$)在閉區(qū)間[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函數(shù);
②直線x=$\frac{π}{8}$是函數(shù)y=sin(2x+$\frac{5π}{4}$)圖象的一條對(duì)稱軸;
③要得到函數(shù)y=sin2x的圖象,需將函數(shù)y=cos(2x-$\frac{π}{3}$)的圖象向右平移$\frac{π}{12}$單位;
④函數(shù)f(x)=Asin(x+φ),(A>0)在x=$\frac{π}{4}$處取到最小值,則y=f($\frac{3π}{4}$-x)是奇函數(shù).
其中,正確的命題的序號(hào)是:②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={x|(x+1)(x-2)>0},B={x∈Z|x2-9≤0},則A∩B=( 。
A.{0,1}B.(0,1)C.[-3,-1)∪(2,3]D.{-3,-2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,直三棱柱ABC-A1B1C1的底面為正三角形,E、F分別是BC、CC1的中點(diǎn).
(1)證明:平面AEF⊥平面B1BCC1;
(2)若D為AB中點(diǎn),∠CA1D=30°且AB=4,求三棱錐F-AEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=kPA,點(diǎn)O為AC中點(diǎn),D是BC上一點(diǎn),OP⊥底面ABC,BC⊥面POD.
(Ⅰ)求證:點(diǎn)D為BC中點(diǎn);
(Ⅱ)當(dāng)k取何值時(shí),O在平面PBC內(nèi)的射影恰好是PD的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,四邊形ABCD是 菱形,AC=6,$BD=6\sqrt{3}$,E是PB上任意一點(diǎn).
(1)求證:AC⊥DE;
(2)當(dāng)△AEC的面積最小時(shí),求證:CE⊥面PAB
(3)當(dāng)△AEC的面積最小值為9時(shí),問:線段BC上是否存在點(diǎn)G,使EG與平面PAB所成角的正切值為2?若存在,求出BG的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.圓x2+y2=1與直線xsinθ+y-1=0的位置關(guān)系為( 。
A.相交B.相切C.相離D.相切或相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合$A=\left\{{x\left|{\frac{x-1}{x+3}>0}\right.}\right\}$,$B=\left\{{y\left|{y=\sqrt{4-{x^2}}}\right.}\right\}$,則A∪B=( 。
A.(-∞,-3)∪(1,+∞)B.(-∞,-3)∪(1,2]C.(-∞,-3)∪[0,+∞)D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓C:(x+1)2+(y-2)2=25和點(diǎn)P(2,1)
(I)判斷點(diǎn)P和圓的位置關(guān)系;
(II)過P的直線被圓C截得的弦長為8,求該直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案