集合A{x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}滿足A∩B≠∅,A∩C=φ實數(shù)a值為 ______.
由B={x|x2-5x+6=0},C={x|x2+2x-8=0}分別化簡得:
B={2,3};C={2,-4}
根據(jù)A∩C=∅可得,2,-4均不是x2-ax+a2-19=0的根
而根據(jù)A∩B≠∅可得,2,3中至少一個為x2-ax+a2-19=0的根,
顯然,3為x2-ax+a2-19=0的根
將3代入x2-ax+a2-19=0可解得:
a=-2或a=5
①將a=5代入集合A解得:A={2,3}
而此時A∩C={2}≠∅,不滿足題意,故舍去.
②將a=-2代入集合A解得A={3,-5}
此時A∩B={3}≠∅,A∩C=∅,故滿足題意.
∴故答案為-2
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|y=log2(x-1)},B={y|y=-x2+2x-2,x∈R}
(1)求集合A,B;
(2)若集合C={x|2x+a<0},且滿足B∪C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2-a<0},B={x|x<2},若A∩B=A則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+y2=4},B={x||x+
1+i
1-i
|<2,i為虛數(shù)單位,x∈R},則集合A與B的關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高三數(shù)學(xué)教學(xué)與測試 題型:013

設(shè)集合A={x|x2-a<0},B={x|x<2},若A∩B=A,則實數(shù)a的取值范圍是

[  ]

A.a(chǎn)<4
B. a≤4
C.0<a≤4
D. 0<a<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)集合A={x|x2-a<0},B={x|x<2},若A∩B=A則實數(shù)a的取值范圍是( 。
A.a(chǎn)<4B.a(chǎn)≤4C.0<a≤4D.0<a<4

查看答案和解析>>

同步練習冊答案