已知橢圓的中心是坐標(biāo)原點(diǎn)O,它的短軸長為2,右焦點(diǎn)為F,右準(zhǔn)線l與x軸相交于點(diǎn)E,
FE
=
OF
,過點(diǎn)F的直線與橢圓相交于A,B兩點(diǎn),點(diǎn)C和點(diǎn)D在l上,且AD∥BC∥x軸.
(I)求橢圓的方程及離心率;
(II)當(dāng)|BC|=
1
3
|AD|
時(shí),求直線AB的方程;
(III)求證:直線AC經(jīng)過線段EF的中點(diǎn).
分析:(1)設(shè)出橢圓的標(biāo)準(zhǔn)方程,根據(jù)短軸長求得b,進(jìn)而根據(jù)
FE
=
OF
聯(lián)立方程組,求得a和c,則橢圓的方程和離心率可得.
(2)求得點(diǎn)P的坐標(biāo),設(shè)直線AB的方程,與橢圓方程聯(lián)立消去y,設(shè)A(x1,y1),B(x2,y2)根據(jù)一元二次方程求得x1和x2的表達(dá)式,根據(jù)AD∥BC∥x軸,且|BC|=
1
3
|AD|
,可知
a2
c
-x2=
1
3
(
a2
c
-x1)
求得k,則直線AB的方程可得.
(3)根據(jù)F和E的坐標(biāo),求得N的坐標(biāo),當(dāng)AB⊥x軸時(shí)A,B,C的坐標(biāo)可知,進(jìn)而求得AC中點(diǎn)的坐標(biāo),判斷出AC經(jīng)過線段EF的中點(diǎn)N;當(dāng)AB不垂直x軸時(shí),則直線AB斜率存在,設(shè)直線AB的方程為y=k(x-1),分別表示出AN和CN的斜率,進(jìn)而表示出兩斜率之差求得結(jié)果為0,可知k1=k2且AN,CN有公共點(diǎn)N,進(jìn)而可知A,C,N三點(diǎn)共線.推斷出直線AC經(jīng)過線段EF的中點(diǎn)N.最后綜合可得結(jié)論.
解答:解:(I)設(shè)橢圓方程為:
x2
a2
+
y2
b2
=1(a>b>0).

由2b=2得b=1.
FE
=
OF
,∴
a2-c2=1
c=
a2
c
-c.
解得a=
2
,c=1

∴橢圓方程為:
x2
2
+y2=1

離心率e=
c
a
=
2
2

(II)由(I)知點(diǎn)F坐標(biāo)為(1,0),又直線AB的斜率存在,設(shè)AB的斜率為k,
則AB的方程為y=k(x-1).
x2
2
+y2=1
y=k(x-1)
得(1+2k2)x2-4k2x+2k2-2=0(*)
設(shè)A(x1,y1),B(x2,y2),則x1,x2是(*)方程兩根,且x1<x2
x1=
2k2-
2k2+2
1+2k2
,x2=
2k2+
2k2+2
1+2k2

∵AD∥BC∥x軸,且|BC|=
1
3
|AD|
,
a2
c
-x2=
1
3
(
a2
c
-x1)
2-
2k2+
2k2+2
1+2k2
=
1
3
(2-
2k2-
2k2+2
1+2k2
)
,解得k=±1.
∴直線AB的方程為x-y-1=0或x+y-1=0.
(III)∵點(diǎn)F(1,0),E(2,0),∴EF中點(diǎn)N的坐標(biāo)為(
3
2
,0)

①當(dāng)AB⊥x軸時(shí),A(1,y1),B(1,-y1),C(2,-y1),
那么此時(shí)AC的中點(diǎn)為(
3
2
,0)
,即AC經(jīng)過線段EF的中點(diǎn)N.
2當(dāng)AB不垂直x軸時(shí),則直線AB斜率存在,
設(shè)直線AB的方程為y=k(x-1),
由(*)式得x1+x2=
4k2
1+2k2
,x1x2=
2k2-2
1+2k2

又∵x12=2-2y12<2,得x1-
3
2
≠0

故直線AN,CN的斜率分別為k1=
y1
x1-
3
2
=
2k(x1-1)
2x1-3
,k2=
y2
2-
3
2
=2k(x2-1)
,
k1-k2=2k•
(x1-1)-(x2-1)(2x1-3)
2x1-3

又∵(x1-1)-(x2-1)(2x1-3)=3(x1+x2)-2x1x2-4,
=
1
1+2k2
[12k2-4(k2-1)-4(1+2k2)]=0

∴k1-k2=0,即k1=k2
且AN,CN有公共點(diǎn)N,∴A,C,N三點(diǎn)共線.
∴直線AC經(jīng)過線段EF的中點(diǎn)N.
綜上所述,直線AC經(jīng)過線段EF的中點(diǎn).
點(diǎn)評(píng):本題主要考查了橢圓的標(biāo)準(zhǔn)方程.涉及了直線與橢圓的關(guān)系,在設(shè)直線方程的時(shí)候,一定要考慮斜率不存在時(shí)的情況,以免答案不全面.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心是坐標(biāo)原點(diǎn)O,它的短軸長為2,右焦點(diǎn)為F,直線l:x=2與x軸相交于點(diǎn)E,
FE
=
OF
,過點(diǎn)F的直線與橢圓相交于A,B兩點(diǎn),點(diǎn)C和點(diǎn)D在l上,且AD∥BC∥x軸.
(Ⅰ)求橢圓的方程及離心率;
(Ⅱ)求證:直線AC經(jīng)過線段EF的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心是坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,離心率為
2
2
,又橢圓上任一點(diǎn)到兩焦點(diǎn)的距離和為2
2
,過點(diǎn)M(0,-
1
3
)與x軸不垂直的直線l交橢圓于P、Q兩點(diǎn).
(1)求橢圓的方程;
(2)在y軸上是否存在定點(diǎn)N,使以PQ為直徑的圓恒過這個(gè)點(diǎn)?若存在,求出N的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天津模擬)已知橢圓的中心是坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,短軸長為2,且兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)恰為一個(gè)正方形的頂點(diǎn).過右焦點(diǎn)F與x軸不垂直的直線l交橢圓于P,Q兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)在線段OF上是否存在點(diǎn)M(m,0),使得|MP|=|MQ|?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆河北省高二上學(xué)期期中理科數(shù)學(xué)試卷 題型:解答題

已知橢圓的中心是坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且橢圓過點(diǎn)三點(diǎn).

(1)求橢圓的方程;

(2)若點(diǎn)為橢圓上不同于的任意一點(diǎn),,求內(nèi)切圓的面積的最大值,并指出其內(nèi)切圓圓心的坐標(biāo).

 

查看答案和解析>>

同步練習(xí)冊答案