【題目】下列說法正確的是( )

A. “f(0)”是“函數(shù)f(x)是奇函數(shù)”的充要條件

B. p:,,則,

C. “若,則”的否命題是“若,則

D. 為假命題,則p,q均為假命題

【答案】C

【解析】

根據(jù)四種命題之間的關(guān)系,對選項中的命題分析、判斷即可.

對于A,f (0)=0時,函數(shù) fx)不一定是奇函數(shù),如fx)=x2x∈R;

函數(shù) fx) 是奇函數(shù)時,f(0)不一定等于零,如fxx≠0;

是既不充分也不必要條件,A錯誤;

對于B,命題p,

則¬px,x2x﹣1≤0,∴B錯誤;

對于C,若α,則sinα的否命題是

“若α,則sinα”,∴正確.

對于D,若pq為假命題,則p,q至少有一假命題,∴錯誤;

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù), 為自然對數(shù)的底數(shù)),曲線在與軸的交點處的切線斜率為-1.

(1)求的值及函數(shù)的單調(diào)區(qū)間;

(2)證明:當(dāng)時, ;

(3)證明:當(dāng)時, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1當(dāng),的極值;

2當(dāng),證明 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】12分)已知p:方程有兩個不等的負(fù)實根,q:方程

無實根,若為真,為假,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),且.

1)求的值,并確定的解析式;

2)若,是否存在實數(shù),使得在區(qū)間上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等比數(shù)列,滿足成等差數(shù)列.

1)求的通項公式;

(2)設(shè)數(shù)列的前項和為 , ,求正整數(shù)的值,使得對任意均有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為打贏打好脫貧攻堅戰(zhàn),實現(xiàn)建檔立卡貧困人員穩(wěn)定增收,某地區(qū)把特色養(yǎng)殖確定為脫貧特色主導(dǎo)產(chǎn)業(yè),助力鄉(xiāng)村振興.現(xiàn)計劃建造一個室內(nèi)面積為平方米的矩形溫室大棚,并在溫室大棚內(nèi)建兩個大小、形狀完全相同的矩形養(yǎng)殖池,其中沿溫室大棚前、后、左、右內(nèi)墻各保留米寬的通道,兩養(yǎng)殖池之間保留2米寬的通道.設(shè)溫室的一邊長度為米,如圖所示.

1)將兩個養(yǎng)殖池的總面積表示為的函數(shù),并寫出定義域;

2)當(dāng)溫室的邊長取何值時,總面積最大?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【安徽省滁州市2018屆高三上學(xué)期期末考試數(shù)學(xué)】隨著霧霾的日益嚴(yán)重,中國部分省份已經(jīng)實施了煤改氣的計劃來改善空氣質(zhì)量指數(shù).2017年支撐我國天然氣市場消費增長的主要資源是國產(chǎn)常規(guī)氣和進口天然氣,資源每年的增量不足以支撐天然氣市場連續(xù)億立方米的年增量.進口LNG和進口管道氣受到接收站、管道能力和進口氣價資源的制約.未來,國產(chǎn)常規(guī)氣產(chǎn)能釋放的紅利將會逐步減弱,產(chǎn)量增量將維持在億方以內(nèi).為了測定某市是否符合實施煤改氣計劃的標(biāo)準(zhǔn),某監(jiān)測站點于20168月某日起連續(xù)天監(jiān)測空氣質(zhì)量指數(shù)(AQI),數(shù)據(jù)統(tǒng)計如下:

1)根據(jù)上圖完成下列表格

空氣質(zhì)量指數(shù)(

天數(shù)

2)若按照分層抽樣的方法,從空氣質(zhì)量指數(shù)在以及的等級中抽取天進行調(diào)研,再從這天中任取天進行空氣顆粒物分析,記這天中空氣質(zhì)量指數(shù)在的天數(shù)為,求的分布列;

3)以頻率估計概率,根據(jù)上述情況,若在一年天中隨機抽取天,記空氣質(zhì)量指數(shù)在以上(含)的天數(shù)為,求的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)

(1) 求函數(shù)的單調(diào)區(qū)間;

(2) 證明:

3)若函數(shù)有兩個零點,且,求實數(shù)的取值范圍;

查看答案和解析>>

同步練習(xí)冊答案