【題目】【安徽省滁州市2018屆高三上學(xué)期期末考試數(shù)學(xué)】隨著霧霾的日益嚴(yán)重,中國部分省份已經(jīng)實施了“煤改氣”的計劃來改善空氣質(zhì)量指數(shù).2017年支撐我國天然氣市場消費增長的主要資源是國產(chǎn)常規(guī)氣和進(jìn)口天然氣,資源每年的增量不足以支撐天然氣市場連續(xù)億立方米的年增量.進(jìn)口LNG和進(jìn)口管道氣受到接收站、管道能力和進(jìn)口氣價資源的制約.未來,國產(chǎn)常規(guī)氣產(chǎn)能釋放的紅利將會逐步減弱,產(chǎn)量增量將維持在億方以內(nèi).為了測定某市是否符合實施煤改氣計劃的標(biāo)準(zhǔn),某監(jiān)測站點于2016年8月某日起連續(xù)天監(jiān)測空氣質(zhì)量指數(shù)(AQI),數(shù)據(jù)統(tǒng)計如下:
(1)根據(jù)上圖完成下列表格
空氣質(zhì)量指數(shù)() | |||||
天數(shù) |
(2)若按照分層抽樣的方法,從空氣質(zhì)量指數(shù)在以及的等級中抽取天進(jìn)行調(diào)研,再從這天中任取天進(jìn)行空氣顆粒物分析,記這天中空氣質(zhì)量指數(shù)在的天數(shù)為,求的分布列;
(3)以頻率估計概率,根據(jù)上述情況,若在一年天中隨機抽取天,記空氣質(zhì)量指數(shù)在以上(含)的天數(shù)為,求的期望.
【答案】(1)見解析(2)見解析(3)
(1)所求表格數(shù)據(jù)如下:
空氣質(zhì)量指數(shù)() | |||||
天數(shù) |
(2)依題意,從空氣質(zhì)量指數(shù)在以及的天數(shù)分別是;
故的可能取值為, , , , ;
, , , , .
故的分布列為:
(3)依題意,任取天空氣質(zhì)量指數(shù)在以上的概率為.
由二項分布知識可知, ,故.
【解析】試題分析:
(1)根據(jù)頻率分布直方圖可計算各區(qū)間的天數(shù),從而填寫表格;
(2)由分層抽樣的概念可知從空氣質(zhì)量指數(shù)在以及的天數(shù)分別是,則的可能取值為, , , , ,應(yīng)用組合的知識及概率公式可計算出相應(yīng)概率,得概率分布列;
(3)由(2)任取天空氣質(zhì)量指數(shù)在以上的概率為.變量,由二項分布知識要計算出期望.
試題解析:
(1)所求表格數(shù)據(jù)如下:
空氣質(zhì)量指數(shù)() | |||||
天數(shù) |
(2)依題意,從空氣質(zhì)量指數(shù)在以及的天數(shù)分別是;
故的可能取值為, , , , ;
, , , , .
故的分布列為:
(3)依題意,任取天空氣質(zhì)量指數(shù)在以上的概率為.
由二項分布知識可知, ,故.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖.
(1)求圖中的值;
(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生期中考試數(shù)學(xué)成績的平均分;
(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學(xué)生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. “f(0)”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B. 若p:,,則:,
C. “若,則”的否命題是“若,則”
D. 若為假命題,則p,q均為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為等差數(shù)列,且,其前8項和為52, 是各項均為正數(shù)的等比數(shù)列,且滿足, .
(1)求數(shù)列和的通項公式;
(2)令,數(shù)列的前項和為,若對任意正整數(shù),都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)(為自然對數(shù)的底數(shù))時,求的最小值;
(2)討論函數(shù)零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小張在淘寶網(wǎng)上開一家商店,他以10元每條的價格購進(jìn)某品牌積壓圍巾2000條.定價前,小張先搜索了淘寶網(wǎng)上的其它網(wǎng)店,發(fā)現(xiàn):商店以30元每條的價格銷售,平均每日銷售量為10條;商店以25元每條的價格銷售,平均每日銷售量為20條.假定這種圍巾的銷售量(條)是售價(元)的一次函數(shù),且各個商店間的售價、銷售量等方面不會互相影響.
(1)試寫出圍巾銷售每日的毛利潤(元)關(guān)于售價(元)的函數(shù)關(guān)系式(不必寫出定義域),并幫助小張定價,使得每日的毛利潤最高(每日的毛利潤為每日賣出商品的進(jìn)貨價與銷售價之間的差價);
(2)考慮到這批圍巾的管理、倉儲等費用為200元/天(只要圍巾沒有售完,均須支付200元/天,管理、倉儲等費用與圍巾數(shù)量無關(guān)),試問小張應(yīng)該如何定價,使這批圍巾的總利潤最高(總利潤=總毛利潤-總管理、倉儲等費用)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,當(dāng)輸入的的值為4時,輸出的的值為2,則空白判斷框中的條件可能為( ).
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線是拋物線的準(zhǔn)線,直線,且與拋物線沒有公共點,動點在拋物線上,點到直線和的距離之和的最小值等于2.
(Ⅰ)求拋物線的方程;
(Ⅱ)點在直線上運動,過點做拋物線的兩條切線,切點分別為,在平面內(nèi)是否存在定點,使得恒成立?若存在,請求出定點的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com