16.已知函數(shù)f(x)=|x+a|+|x-2|.
(1)當(dāng)a=-4時,求不等式f(x)≥6的解集;
(2)若f(x)≤|x-3|的解集包含[0,1],求實數(shù)a的取值范圍.

分析 (1)由條件利用絕對值的意義,求得不等式的解集.
(2)(2)原命題等價于f(x)≤|x-3|在[0,1]上恒成立,即-1-x≤a≤1-x在[0,1]上恒成立,由此求得a的范圍.

解答 解:(1)當(dāng)a=-4時,求不等式f(x)≥6,即|x-4|+|x-2|≥6,
而|x-4|+|x-2|表示數(shù)軸上的x對應(yīng)點到4、2對應(yīng)點的距離之和,
而0和6對應(yīng)點到4、2對應(yīng)點的距離之和正好等于6,故|x-4|+|x-2|≥6的解集為{x|x≤0,或x≥6}.
(2)原命題等價于f(x)≤|x-3|在[0,1]上恒成立,即|x+a|+2-x≤3-x在[0,1]上恒成立,
即-1≤x+a≤1,即-1-x≤a≤1-x在[0,1]上恒成立,即-1≤a≤0.

點評 本題主要考查絕對值的意義,函數(shù)的恒成立問題,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知數(shù)列{an}滿足:a1=1,${2^{n-1}}{a_n}={a_{n-1}}(n∈{N^*},n≥2)$,則數(shù)列{an}的通項公式為an=${(\frac{1}{2})^{\frac{n(n-1)}{2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知c<0,下列不等式中成立的一個是( 。
A.c>($\frac{1}{2}$)cB.c>2cC.2c<($\frac{1}{2}$)cD.2c>($\frac{1}{2}$)c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.淮北市政府為科技興市,欲在如圖所示的矩形ABCD的非農(nóng)業(yè)用地中規(guī)劃出一個高科技工業(yè)園區(qū)(如圖中陰影部分),形狀為直角梯形QPRE(線段EQ和RP為兩個底邊),已知AB=2km,BC=6km,AE=BF=4km,其中AF是以A為頂點、AD為對稱軸的拋物線的一段曲線段.
(1)若QP=x,陰影部分的面積為S,用x表示S的解析式;
(2)試求該高科技工業(yè)園區(qū)的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知sin($\frac{π}{6}$-α)-cosα=$\frac{1}{3}$,則cos(2α+$\frac{π}{3}$)=( 。
A.$\frac{5}{18}$B.-$\frac{5}{18}$C.$\frac{7}{9}$D.-$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在等比數(shù)列{an}中,若a3a6=9,a2a4a5=27,則a2=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知向量$\overrightarrow m=({sinA,cosA}),\overrightarrow n=({\sqrt{3},-1})$,$\overrightarrow m∥\overrightarrow n$,且A為鈍角.
(1)求角A的大;
(2)求函數(shù)f(x)=cos2x+4cosAsinx(x∈R)取最大值時x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.不等式3x2-7x+2<0的解集為( 。
A.$\left\{{x\left|{\frac{1}{3}<x<2}\right.}\right\}$B.$\left\{{x\left|{x<\frac{1}{3}或x>2}\right.}\right\}$C.$\left\{{x\left|{-\frac{1}{2}<x<-\frac{1}{3}}\right.}\right\}$D.{x|x>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,四棱錐S一ABCD的底面是矩形,SA⊥底面ABCD,P為BC邊的中點,且AD=2,SA=AB=1.
求:(1)SC與平面SAD所成角的正切值;
    (2)SP與平面SCD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案