當(dāng)(a,5)到直線4x-3y=3的距離不小于6a的取值范圍是   

[  ]

A (-312)            B[-3,12]

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南)在直角坐標(biāo)系xoy中,曲線C1上的點(diǎn)均在C2:(x-5)2+y2=9外,且對C1上任意一點(diǎn)M,M到直線x=-2的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.
(Ⅰ)求曲線C1的方程
(Ⅱ)設(shè)P(x0,y0)(y0≠±3)為圓C2外一點(diǎn),過P作圓C2的兩條切線,分別于曲線C1相交于點(diǎn)A,B和C,D.證明:當(dāng)P在直線x=-4上運(yùn)動時,四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,曲線C1的點(diǎn)均在C2:(x-5)2+y2=9外,且對C1上任意一點(diǎn)M,M到直線x=-2的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.
(Ⅰ)求曲線C1的方程;
(Ⅱ)設(shè)P(x0,y0)(y0≠±3)為圓C2外一點(diǎn),過P作圓C2的兩條切線,分別與曲線C1相交于點(diǎn)A,B和C,D.證明:當(dāng)P在直線x=-4上運(yùn)動時,四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值.
(Ⅲ)設(shè)P(-4,1)為圓C2外一點(diǎn),過P作圓C2的兩條切線,分別與曲線C1相交于點(diǎn)A,B和C,D.證明:四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l經(jīng)過拋物線y2=4x的焦點(diǎn)F,且與拋物線相交于A、B兩點(diǎn).
(1)若|AF|=4,求點(diǎn)A的坐標(biāo);
(2)設(shè)直線l的斜率為k,當(dāng)線段AB的長等于5時,求k的值.
(3)求拋物線y2=4x上一點(diǎn)P到直線2x-y+4=0的距離的最小值.并求此時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆山東省濟(jì)寧市高二10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)在直角坐標(biāo)系xOy中,曲線C1的點(diǎn)均在C2:(x-5)2+y2=9外,且對C1上任意一點(diǎn)M,M到直線x=﹣2的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.

(1)求曲線C1的方程;

(2)設(shè)P(x0,y0)(y0≠±3)為圓C2外一點(diǎn),過P作圓C2的兩條切線,分別與曲線C1相交于

點(diǎn)A,B和C,D.證明:當(dāng)P在直線x=﹣4上運(yùn)動時,四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(湖南卷解析版) 題型:解答題

在直角坐標(biāo)系xOy中,曲線C1的點(diǎn)均在C2:(x-5)2+y2=9外,且對C1上任意一點(diǎn)M,M到直線x=﹣2的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.

(Ⅰ)求曲線C1的方程;

(Ⅱ)設(shè)P(x0,y0)(y0≠±3)為圓C2外一點(diǎn),過P作圓C2的兩條切線,分別與曲線C1相交于點(diǎn)A,B和C,D.證明:當(dāng)P在直線x=﹣4上運(yùn)動時,四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值.

 

查看答案和解析>>

同步練習(xí)冊答案