已知a>b>0,則下列命題正確的是( 。
A、
2a+b
a+2b
a
b
B、
2a+b
a+2b
a
b
C、
2a+b
a+2b
=
b
a
D、
2a+b
a+2b
b
a
考點(diǎn):不等式比較大小
專題:不等式的解法及應(yīng)用
分析:利用“作差法”、不等式的基本性質(zhì)即可得出.
解答: 解:∵a>b>0,
2a+b
a+2b
-
a
b
=
b2-a2
b(a+2b)
>0,
2a+b
a+2b
a
b

故選:B.
點(diǎn)評(píng):本題考查了“作差法”、不等式的基本性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,b>0,若
5
是5a與5b的等比中項(xiàng),則
2
a
+
1
b
的最小值為( 。
A、6
B、3+2
2
C、1
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)1、F2分別是它的左、右焦點(diǎn),已知橢圓C過點(diǎn)(0,1),且離心率e=
2
2
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓的左、右頂點(diǎn)分別為A、B,直線l的方程為x=4,P是橢圓上異于A、B的任意一點(diǎn),直線PA、PB分別交直線l于D、E兩點(diǎn),求
F1D
F2E
的值;
(Ⅲ)過點(diǎn)Q(1,0)任意作直線m(與x軸不垂直)與橢圓C交于M、N兩點(diǎn),與l交于R點(diǎn),
RM
=x
MQ
RN
=y
NQ
. 求證:4x+4y+5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某高校在2014年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100],得到的頻率分布直方圖如圖所示.
(Ⅰ)分別求第3,4,5組的頻率;
(Ⅱ)該校決定在第3,4,5組中用分層抽樣抽取6名學(xué)生進(jìn)行問卷調(diào)查,然后再?gòu)倪@6名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行面談,若這2名學(xué)生中有ξ名學(xué)生是第4組的,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正數(shù)x,y滿足x2+y2=1,則
1
x
+
1
y
的最小值為( 。
A、
3
5
2
B、
2
C、
5
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=log34,b=log43,c=log53,則a,b,c的大小關(guān)系是( 。
A、c<a<b
B、b<a<c
C、a<c<b
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的定義域:
(1)y=8 
1
2x-1
;
(2)y=
1-(
1
2
)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U={1,2,3,4,5},A={x|x2-6x+5=0},則∁UA等于( 。
A、{3}
B、{2,3}
C、{2,4}
D、{2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A,B,C是△ABC的內(nèi)角,向量
m
=(cos
3A
2
,sin
3A
2
),
n
=(cos
A
2
,sin
A
2
)滿足|
m
+
n
|=
3

(1)求角A的大小
(2)若sinB+sinC=
3
sinA,試判斷△ABC的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案