精英家教網(wǎng)已知橢圓
x2
a2
+
y2
b2
=1的焦點(diǎn)坐標(biāo)為(±1,0),橢圓經(jīng)過(guò)點(diǎn)(1,
2
2

(1)求橢圓方程;
(2)過(guò)橢圓左頂點(diǎn)M(-a,0)與直線x=a上點(diǎn)N的直線交橢圓于點(diǎn)P,求
OP
ON
的值.
(3)過(guò)右焦點(diǎn)且不與對(duì)稱軸平行的直線l交橢圓于A、B兩點(diǎn),點(diǎn)Q(2,t),若KQA+KQB=2與l的斜率無(wú)關(guān),求t的值.
分析:(1)利用橢圓的三參數(shù)的關(guān)系列出一個(gè)方程,再將P的坐標(biāo)代入得到另一個(gè)方程,解方程組求出橢圓的方程.
(2)設(shè)出N點(diǎn),寫(xiě)出MN的方程,將MN方程與橢圓方程聯(lián)立,由韋達(dá)定理表示出P的坐標(biāo),利用向量的坐標(biāo)公式表示出兩個(gè)向量的坐標(biāo),利用向量的數(shù)量積公式求出兩個(gè)向量的數(shù)量積.
(3)設(shè)出AB的方程,將AB方程與橢圓方程聯(lián)立,由韋達(dá)定理得到A,B坐標(biāo)的關(guān)系,表示出KQA+KQB,令其為2,得到方程恒成立求t值.
解答:解:(1)由題意得
a2=b2+1
1
a2
+
1
2b2
=1
解得a2=2,b2=1
故橢圓方程為
x2
2
+y2=1

(2)設(shè)N(
2
,m
),P(X,Y)則MN的方程為y=
m
2
2
(x+
2
)

y=
d
2
2
(x+
2
)
x2
2
+y2=1
(4+m2)x2+2
2
m2x+2m2-8=0

由韋達(dá)定理得x-
2
=
-2
m2
4+m2
所以x=
4
2
-
2
m2
4+m2
代入直線方程得
P(
4
2
-
2
m2
4+m2
,
4m
4+m2

OP
=(
4
2
-
2
m2
4+m2
,
4m
4+m2
)
,
ON
=(
2
,m)

OP
ON
=
8-2m2
4+m2
+
4m2
4+m2
=2

(3)AB的方程為x=my+1,設(shè)A(e,f),B(g,h)
x=my+1
x2
2
+y2=1
得(m2+2)y2+2my-1=0
所以f+h=-
2m
m2+2
,fh=
-1
m2+2

kQA+kQB
f-t
e-2
+
h-t
g-2
=
f-t
mf-1
+
h-t
mh-1

=
2mfh-(mt+1)(f+h)+2t
m2fh-m(f+h)+1

=
-
2m
m2+2
+
(mt+1)•2m
m2+2
+ 2t
-
m2
m2+2
2m2
m2+2
+ 1
=2
∵KQA+KQB=2與l的斜率無(wú)關(guān)
∴2t=2,即t=1.
點(diǎn)評(píng):本題考查利用待定系數(shù)法求橢圓方程、考查向量的坐標(biāo)公式、考查向量的數(shù)量積公式、考查解決直線與圓錐曲線的位置關(guān)系常采用將直線方程與圓錐曲線方程聯(lián)立,利用韋達(dá)定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點(diǎn)分別為F1,F(xiàn)2,左頂點(diǎn)為A,若|F1F2|=2,橢圓的離心率為e=
1
2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程,
(Ⅱ)若P是橢圓上的任意一點(diǎn),求
PF1
PA
的取值范圍
(III)直線l:y=kx+m與橢圓相交于不同的兩點(diǎn)M,N(均不是長(zhǎng)軸的頂點(diǎn)),AH⊥MN垂足為H且
AH
2
=
MH
HN
,求證:直線l恒過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)F(-c,0)是長(zhǎng)軸的一個(gè)四等分點(diǎn),點(diǎn)A、B分別為橢圓的左、右頂點(diǎn),過(guò)點(diǎn)F且不與y軸垂直的直線l交橢圓于C、D兩點(diǎn),記直線AD、BC的斜率分別為k1,k2
(1)當(dāng)點(diǎn)D到兩焦點(diǎn)的距離之和為4,直線l⊥x軸時(shí),求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率是
3
2
,且經(jīng)過(guò)點(diǎn)M(2,1),直線y=
1
2
x+m(m<0)
與橢圓相交于A,B兩點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)m=-1時(shí),求△MAB的面積;
(3)求△MAB的內(nèi)心的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•威海二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
6
3
,過(guò)右焦點(diǎn)做垂直于x軸的直線與橢圓相交于兩點(diǎn),且兩交點(diǎn)與橢圓的左焦點(diǎn)及右頂點(diǎn)構(gòu)成的四邊形面積為
2
6
3
+2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)M(0,2),直線l:y=1,過(guò)M任作一條不與y軸重合的直線與橢圓相交于A、B兩點(diǎn),若N為AB的中點(diǎn),D為N在直線l上的射影,AB的中垂線與y軸交于點(diǎn)P.求證:
ND
MP
AB
2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F,過(guò)F作y軸的平行線交橢圓于M、N兩點(diǎn),若|MN|=3,且橢圓離心率是方程2x2-5x+2=0的根,求橢圓方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案