在直角坐標(biāo)系xoy中,設(shè)傾斜角為α的直線l:
x=2+tcosα
y=
3
+tsinα
(t為參數(shù))與曲線 C:
x=2cosθ
y=sinθ
(θ為參數(shù))相交于不同兩點(diǎn)A,B.
(1)若α=
π
3
,求線段AB中點(diǎn)M的坐標(biāo);
(2)若|PA|•|PB|=|OP|2,其中P(2,
3
)
,求直線l的斜率.
分析:(1)把直線和圓的參數(shù)方程化為普通方程,聯(lián)立后根據(jù)根與系數(shù)的關(guān)系求出兩交點(diǎn)中點(diǎn)的橫坐標(biāo),待入直線方程再求中點(diǎn)的縱坐標(biāo);
(2)把直線方程和圓的方程聯(lián)立,化為關(guān)于t的一元二次方程,運(yùn)用直線參數(shù)方程中參數(shù)t的幾何意義,結(jié)合給出的等式求解直線的傾斜角的正切值,則斜率可求,
解答:解:(1)當(dāng)α=
π
3
時(shí),由
x=2+tcosα
y=
3
+tsinα
,得
x=2+
1
2
t
y=
3
+
3
2
t
,所以直線方程為y=
3
x-
3
,
x=2cosθ
y=sinθ
,得曲線C的普通方程為
x2
4
+y2=1
,
設(shè)A(x1,y1),B(x2,y2)再由
y=
3
x-
3
x2
4
+y2=1
,得:13x2-24x+8=0,
所以
x1+x2
2
=
12
13
y1+y2
2
=
3
(x1+x2)
2
-
3
=-
3
13
,所以M的坐標(biāo)為(
12
13
,-
3
13
)

(2)把直線的參數(shù)方程代入
x2
4
+y2=1
,得:(1+3sin2α)t2+(8
3
sinα+4cosα)t+12=0

所以t1t2=
12
(1+3sin2α)
,由|PA|•|PB|=|t1t2|=|OP|2=7,得:
12
1+3sin2α
=7
,所以sin2α=
5
21
,cos2α=
16
21
,
所以tan2α=
5
16
,所以tanα=
5
4

所以直線L的斜率為
5
4
點(diǎn)評(píng):本題考查了參數(shù)方程化普通方程,考查了直線的斜率、直線與橢圓的位置關(guān)系,解答此題(2)的關(guān)鍵是靈活運(yùn)用直線參數(shù)方程中參數(shù)的幾何意義,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2.F2也是拋物線C2:y2=4x的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=
5
3

(Ⅰ)求C1的方程;
(Ⅱ)平面上的點(diǎn)N滿足
MN
=
MF1
+
MF2
,直線l∥MN,且與C1交于A,B兩點(diǎn),若
OA
OB
=0
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知點(diǎn)P(2cosx+1,2cos2x+2)和點(diǎn)Q(cosx,-1),其中x∈[0,π].若向量
OP
OQ
垂直,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在直角坐標(biāo)系xOy中,射線OA在第一象限,且與x軸的正半軸成定角60°,動(dòng)點(diǎn)P在射線OA上運(yùn)動(dòng),動(dòng)點(diǎn)Q在y軸的正半軸上運(yùn)動(dòng),△POQ的面積為2
3

(1)求線段PQ中點(diǎn)M的軌跡C的方程;
(2)R1,R2是曲線C上的動(dòng)點(diǎn),R1,R2到y(tǒng)軸的距離之和為1,設(shè)u為R1,R2到x軸的距離之積.問:是否存在最大的常數(shù)m,使u≥m恒成立?若存在,求出這個(gè)m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知圓M的方程為x2+y2-4xcosα-2ysinα+3cos2α=0(α為參數(shù)),直線l的參數(shù)方程為
x=tcosθ
y=1+tsinθ
(t
為參數(shù))
(I)求圓M的圓心的軌跡C的參數(shù)方程,并說明它表示什么曲線;
(II)求直線l被軌跡C截得的最大弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,左右兩個(gè)焦分別為F1,F(xiàn)2.過右焦點(diǎn)F2且與x軸垂直的直線與橢圓C相交M、N兩點(diǎn),且|MN|=2.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的一個(gè)頂點(diǎn)為B(0,-b),是否存在直線l:y=x+m,使點(diǎn)B關(guān)于直線l 的對稱點(diǎn)落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案