過正方體ABCD-A1B1C1D1的頂點(diǎn)A1在空間作直線l,使l與直線AC和BC1所成的角都等于
π
3
,則這樣的直線l共可以作出( 。
A、1條B、2條C、3條D、4條
分析:根據(jù)題意,因?yàn)锳D1∥BC1,所以直線AC和BC1所成的角即為直線AC和AD1所成的角,所以過A1在空間作直線l,使l與直線AC和BC1所成的角都等于
π
3
,可轉(zhuǎn)化為過點(diǎn)A在空間作直線l,使l與直線AC和AD1所成的角都等于
π
3
.可分在平面ACD1內(nèi)和在平面ACD1外兩種情況尋找.因?yàn)橐c直線AC和AD1所成的角都相等,故在平面ACD1內(nèi)可考慮角平分線;在平面ACD1外可將角平分線繞點(diǎn)A旋轉(zhuǎn)考慮.
解答:解:因?yàn)锳D1∥BC1,所以直線AC和BC1所成的角即為直線AC和AD1所成的角,所以過A1在空間作直線l,使l與直線AC和BC1所成的角都等于
π
3
,即過點(diǎn)A在空間作直線l,使l與直線AC和AD1所成的角都等于
π
3

因?yàn)椤螦CD1=60°,∠ACD1的外角平分線與AC和AD1所成的角相等,均為60°,所以在平面ACD1內(nèi)有一條滿足要求.
因?yàn)椤螦CD1的角平分線與AC和AD1所成的角相等,均為30°,將角平分線繞點(diǎn)A向上轉(zhuǎn)動(dòng)到與面ACD1垂直的過程中,存在兩條直線與直線AC和BC1所成的角都等于
π
3
,故符合條件的直線有3條.
故選C
點(diǎn)評(píng):本題考查異面直線所成角的問題,考查空間想象能力和轉(zhuǎn)化能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過正方體ABCD-A1B1C1D1的中心O與棱AB,AD,AA1所在直線都成等角的平面?zhèn)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,正方體ABCD-A'B'C'D'的棱長(zhǎng)為1,E,F(xiàn)分別是棱AA',CC'的中點(diǎn),過直線E,F(xiàn)的平面分別與棱BB'、DD'交于M,N,設(shè)BM=x,x∈[0,1],給出以下四個(gè)命題:
①平面MENF⊥平面BDD'B';
②當(dāng)且僅當(dāng)x=
1
2
時(shí),四邊形MENF的面積最小;
③四邊形MENF周長(zhǎng)L=f(x),x∈[0,1]是單調(diào)函數(shù);
④四棱錐C'-MENF的體積V=h(x)為常函數(shù);
以上命題中假命題的序號(hào)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,正方體ABCD-A′B′C′D′的棱長(zhǎng)為1,E、F 分別是棱AA',CC'的中點(diǎn),過直線E、F的平面分別與棱BB′,DD′交于M、N,設(shè)BM=x,x∈[0,1],給出以下四個(gè)命題:
①當(dāng)且僅當(dāng)x=0時(shí),四邊形MENF的周長(zhǎng)最大;
②當(dāng)且僅當(dāng)x=
1
2
時(shí),四邊形MENF的面積最;
③四棱錐C′-MENF的體積V=h(x)為常函數(shù);
④正方體ABCD-A′B′C′D′被截面MENF平分成等體積的兩個(gè)多面體.
以上命題中正確命題的個(gè)數(shù)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A/B/C/D/的棱長(zhǎng)為8cm,M,N,P分別是AB,A/D/,BB/棱的中點(diǎn).
(1)畫出過M,N,P三點(diǎn)的平面與平面A/B/C/D/及平面BB/C/C的交線,并說明畫法的依據(jù);
(2)設(shè)過M,N,P三點(diǎn)的平面與B/C/交于點(diǎn)Q,求PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A′B′C′D′中,過對(duì)角線BD′的一個(gè)平面交棱AA′于E,交棱CC′于F,則:
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E有可能是菱形;
④四邊形BFD′E有可能垂直于平面BB′D.
其中所有正確結(jié)論的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案