A-BCD是各條棱長都相等的三棱錐.,那么AB和CD所成的角等于_______。

試題分析:取CD中點O,連接AO,BO,由于各條棱長都相等,所以 平面 ,AB和CD所成的角等于
點評:將此正三棱錐看作是正方體中截取4個頂點得到的來求解會更加簡單
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四棱錐S - ABCD中,底面ABCD是直角梯形,側棱SA⊥底面ABCD,AB垂直于AD和BC,SA ="AB=BC" =2,AD =1.M是棱SB的中點.

(Ⅰ)求證:AM∥面SCD;
(Ⅱ)求面SCD與面SAB所成二面角的余弦值;
(Ⅲ)設點N是直線CD上的動點,MN與面SAB所成的角為,求sin的最大值,

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分) 如圖,平面⊥平面,其中為矩形,為梯形,,=2=2,中點.
(Ⅰ) 證明;
(Ⅱ) 若二面角的平面角的余弦值為,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在四棱錐中,底面是直角梯形,,∠, ,平面⊥平面.

(1)求證:⊥平面;
(2)求平面和平面所成二面角(小于)的大;
(3)在棱上是否存在點使得∥平面?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖所示的多面體,它的正視圖為直角三角形,側視圖為正三角形,俯視圖為正方形(尺寸如圖所示),E為VB的中點.

(1)求證:VD∥平面EAC;
(2)求二面角A—VB—D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

將一幅斜邊長相等的直角三角板拼接成如圖所示的空間圖形,其中AD=BD=,∠BAC=30°,若它們的斜邊AB重合,讓三角板ABD以AB為軸轉動,則下列說法正確的是         .

①當平面ABD⊥平面ABC時,C、D兩點間的距離為
②在三角板ABD轉動過程中,總有AB⊥CD;
③在三角板ABD轉動過程中,三棱錐D-ABC體積的最大值為.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

一個多面體的直觀圖和三視圖如下:(其中分別是中點)

(1)求證:平面;
(2)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

半徑為R的球放在墻角,同時與兩墻面和地面相切,那么球心到墻角頂點的距離為__    ____.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知多面體ABC-DEFG,AB,AC,AD兩兩垂直,面ABC//面DEFG,面BEF//面ADGC,AB=AD=DG=2,AC=EF=1,則該多面體的體積為(   )
A.2B.4C.6D.8

查看答案和解析>>

同步練習冊答案