【題目】(某保險(xiǎn)公司有一款保險(xiǎn)產(chǎn)品的歷史戶獲益率(獲益率=獲益÷保費(fèi)收入)的頻率分布直方圖如圖所示:
(Ⅰ)試估計(jì)平均收益率;
(Ⅱ)根據(jù)經(jīng)驗(yàn)若每份保單的保費(fèi)在元的基礎(chǔ)上每增加元,對(duì)應(yīng)的銷量(萬(wàn)份)與(元)有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下組與的對(duì)應(yīng)數(shù)據(jù):
(元) | |||||
銷量(萬(wàn)份) |
(ⅰ)根據(jù)數(shù)據(jù)計(jì)算出銷量(萬(wàn)份)與(元)的回歸方程為;
(ⅱ)若把回歸方程當(dāng)作與的線性關(guān)系,用(Ⅰ)中求出的平均獲益率估計(jì)此產(chǎn)品的獲益率,每份保單的保費(fèi)定為多少元時(shí)此產(chǎn)品可獲得最大獲益,并求出該最大獲益.
參考公示:
【答案】(I);(II)(ⅰ),(ⅱ).
【解析】試題分析:(1)利用頻率分布直方圖計(jì)算出平均收益率;(2)利用公式計(jì)算出, ,從而得到回歸直線方程;進(jìn)一步算出最大獲益即可.
試題解析:
(Ⅰ)區(qū)間中值依次為:0.05,0.15,0.25,0.35,0.45,0.55,
取值概率依次為:0.1,0.2,0.25,0.3,0.1,0.05,
平均獲益率為
(Ⅱ)(i)
則即.
(ii)設(shè)每份保單的保費(fèi)為元,則銷量為,則保費(fèi)獲益為
萬(wàn)元,
當(dāng)元時(shí),保費(fèi)收入最大為萬(wàn)元,保險(xiǎn)公司預(yù)計(jì)獲益為萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:
已知
(1)求的值
(2)已知變量具有線性相關(guān)性,求產(chǎn)品銷量關(guān)于試銷單價(jià)的線性回歸方程 可供選擇的數(shù)據(jù)
(3)用表示(2)中所求的線性回歸方程得到的與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值。當(dāng)銷售數(shù)據(jù)對(duì)應(yīng)的殘差的絕對(duì)值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)“好數(shù)據(jù)”。試求這6組銷售數(shù)據(jù)中的 “好數(shù)據(jù)”。
參考數(shù)據(jù):線性回歸方程中的最小二乘估計(jì)分別是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】電視傳媒公司為了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:
非體育迷 | 體育迷 | 合計(jì) | |
男 | |||
女 | 10 | 55 | |
合計(jì) |
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成上面的2×2列聯(lián)表,若按95%的可靠性要求,并據(jù)此資料,你是否認(rèn)為“體育迷”與性別有關(guān)?
(2)現(xiàn)在從該地區(qū)非體育迷的電視觀眾中,采用分層抽樣方法選取5名觀眾,求從這5名觀眾選取兩人進(jìn)行訪談,被抽取的2名觀眾中至少有一名女生的概率.
附:
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列中, ,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車的推廣給消費(fèi)者帶來(lái)全新消費(fèi)體驗(yàn),迅速贏得廣大消費(fèi)者的青睞,然而,同時(shí)也暴露出管理、停放、服務(wù)等方面的問(wèn)題,為了了解公眾對(duì)共享單車的態(tài)度(提倡或不提倡),某調(diào)查小組隨機(jī)地對(duì)不同年齡段50人進(jìn)行調(diào)查,將調(diào)查情況整理如下表:
并且,年齡在和的人中持“提倡”態(tài)度的人數(shù)分別為5和3,現(xiàn)從這兩個(gè)年齡段中隨機(jī)抽取2人征求意見(jiàn).
(Ⅰ)求年齡在中被抽到的2人都持“提倡”態(tài)度的概率;
(Ⅱ)求年齡在中被抽到的2人至少1人持“提倡”態(tài)度的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓與軸負(fù)半軸相交于點(diǎn),與軸正半軸相交于點(diǎn).
(1)若過(guò)點(diǎn)的直線被圓截得的弦長(zhǎng)為,求直線的方程;
(2)若在以為圓心半徑為的圓上存在點(diǎn),使得 (為坐標(biāo)原點(diǎn)),求的取值范圍;
(3)設(shè)是圓上的兩個(gè)動(dòng)點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,如果直線與軸分別交于和,問(wèn)是否為定值?若是求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的滿足,前項(xiàng)的和為,且.
(1)求的值;
(2)設(shè),證明:數(shù)列是等差數(shù)列;
(3)設(shè),若,求對(duì)所有的正整數(shù)都有成立的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知長(zhǎng)方形中,,,M為DC的中點(diǎn).將沿折起,使得平面⊥平面.
(1)求證:;
(2)若點(diǎn)是線段上的一動(dòng)點(diǎn),問(wèn)點(diǎn)在何位置時(shí),二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面,底面為梯形,,,且.
(Ⅰ)若點(diǎn)為上一點(diǎn)且,證明:平面;
(Ⅱ)求二面角的大小;
(Ⅲ)在線段上是否存在一點(diǎn),使得?若存在,求出的長(zhǎng);若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com