如圖,AB是⊙O的直徑,PB,PC分別切⊙O于B,C,若∠ACE=38°,則∠P=
 
考點(diǎn):弦切角
專題:立體幾何
分析:要求∠P的大小,我們要首先分析∠P與已知的角∠ACE=38°的關(guān)系,結(jié)合AB為圓的直徑,聯(lián)想直徑所對(duì)的圓周角為90°,再結(jié)合弦切角定理,我們易在已知角與未知角之間找到聯(lián)系,從而求解.
解答: 解:連接BC,
∵AB是⊙O的直徑
∴∠ACB=90°,
又∠ACE=38°,且PB=PC
∴∠PCB=∠PBC=52°,
∴∠P=180°-52°-52°=76°
故答案為:76°
點(diǎn)評(píng):要求一個(gè)角的大小,先要分析未知角與已知角的關(guān)系,然后再選擇合適的性質(zhì)來進(jìn)行計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD,∠DAB=90°,BC⊥CD,∠CDB=30°,且PA=PB=PD=AB=AD=
2

(Ⅰ)求證:面PBD⊥面ABCD;
(Ⅱ)求平面PAB與平面PBC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為1的正方形,PA⊥底面ABCD,點(diǎn)M是棱PC的中點(diǎn),AM⊥平面PBD.
(1)求四棱錐P-ABCD的體積;
(2)求直線PC與平面AMD所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果橢圓的長(zhǎng)軸長(zhǎng)為12,短軸長(zhǎng)為8,焦點(diǎn)在x軸上,則橢圓方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z=
x-y,x≥2y
x
4
+
y
2
,x<2y
,若-2≤x≤2,-2≤y≤2,則z的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

所有真約數(shù)(除本身之外的正約數(shù))的和等于它本身的正整數(shù)叫做完全數(shù).如:6=1+2+3;28=1+2+4+7+14;496=1+2+4+8+16+31+62+124+248.已經(jīng)證明:若2n-1是質(zhì)數(shù),則2n-1(2n-1)是完全數(shù),n∈N*.請(qǐng)寫出一個(gè)四位完全數(shù)
 
;又6=2×3,所以6的所有正約數(shù)之和可表示為(1+2)•(1+3);28=22×7,所以28的所有正約數(shù)之和可表示為(1+2+22)•(1+7);按此規(guī)律,請(qǐng)寫出所給的四位數(shù)的所有正約數(shù)之和可表示為
 
.(請(qǐng)參照6與28的形式給出)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
ax,x<1
-x+a,x>1
在[0,2]上的最大值比最小值大
5
2
,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足關(guān)系a1=3,an+1=an+n,則該數(shù)列的通項(xiàng)公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知斜率為-
1
2
的直線l交橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)于A,B兩點(diǎn),若點(diǎn)P(2,1)是AB的中點(diǎn),則C的離心率等于( 。
A、
1
2
B、
2
2
C、
3
4
D、
3
2

查看答案和解析>>

同步練習(xí)冊(cè)答案