3.已知函數(shù)f(x)=mx3+nx+1(mn≠0),且f(-1)=5,則f(1)=7.

分析 利用函數(shù)的奇偶性的性質(zhì)化簡求解即可.

解答 解:函數(shù)f(x)=mx3+nx+1(mn≠0),且f(-1)=5,則f(1)=m+n+1=-(-m-n+1)+2=-f(-1)+2=5+2=7.
故答案為:7.

點(diǎn)評 本題考查函數(shù)的奇偶性的性質(zhì)的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={直線|直線l的方程是(3m+1)x+(1-m)y-2-2m=0},集合B={直線|直線l是y=x3的切線},則A∩B=( 。
A.{(x,y)|3x-y-2=0}B.{(1,1)}C.{(x,y)|3x-4y+1=0}D.{(x,y)|x-y=0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.某單位有工程師6人,技術(shù)員12人,技工18人,要從這些人中抽取一個(gè)容量為n的樣本.如果采用系統(tǒng)抽樣法和分層抽樣法抽取,不用剔除個(gè)體;如果樣本容量增加一個(gè),則在采用系統(tǒng)抽樣時(shí),需要在總體中先剔除1個(gè)個(gè)體.則樣本容量n=6,其中工程師晏某被抽中的概率為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.以下所示幾何體中是棱柱的有①③⑤(填序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=m-|x-2|,m∈R,f(x+2)≥0的解集為[-2,2].
(1)求m的值;
(2)若?x∈R,f(x)≥-|2x-1|-t2+$\frac{3}{2}$t恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知點(diǎn)A(0,2)和拋物線C:y2=6x,求過點(diǎn)A且與拋物線C只有一個(gè)交點(diǎn)的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=mx2+(m-3)x+1
(1)若f(x)為偶函數(shù),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若f(x)的圖象與x軸的交點(diǎn)至少有一個(gè)在原點(diǎn)右側(cè),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在數(shù)列{an}中,a1=1,an+2+(-1)nan=1.記Sn是數(shù)列{an}的前n項(xiàng)和,則S200=5100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,底面ABCD是以∠A=60°的菱形,PD⊥底面ABCD,且PD=CD,點(diǎn)M,N分別為棱AD,PC的中點(diǎn)證明:
(1)DN∥平面PMB;
(2)MB⊥平面PAD.

查看答案和解析>>

同步練習(xí)冊答案