分析 由題意知采用系統(tǒng)抽樣和分層抽樣方法抽取,不用剔除個(gè)體;如果樣本容量增加一個(gè),則在采用系統(tǒng)抽樣時(shí),需要在總體中先剔除1個(gè)個(gè)體,算出總體個(gè)數(shù),根據(jù)分層抽樣的比例和抽取的工程師人數(shù)得到n應(yīng)是6的倍數(shù),36的約數(shù),由系統(tǒng)抽樣得到$\frac{35}{n+1}$必須是整數(shù),驗(yàn)證出n的值.
解答 解:由題意知采用系統(tǒng)抽樣和分層抽樣方法抽取,不用剔除個(gè)體;
如果樣本容量增加一個(gè),則在采用系統(tǒng)抽樣時(shí),
需要在總體中先剔除1個(gè)個(gè)體,
∵總體容量為6+12+18=36.
當(dāng)樣本容量是n時(shí),由題意知,系統(tǒng)抽樣的間隔為$\frac{36}{n}$,
分層抽樣的比例是$\frac{n}{36}$,抽取的工程師人數(shù)為$\frac{n}{36}$•6=$\frac{n}{6}$,
技術(shù)員人數(shù)為$\frac{n}{36}$•12=$\frac{n}{3}$,技工人數(shù)為$\frac{n}{36}$•18=$\frac{n}{2}$,
∵n應(yīng)是6的倍數(shù),36的約數(shù),
即n=6,12,18.
當(dāng)樣本容量為(n+1)時(shí),總體容量是35人,
系統(tǒng)抽樣的間隔為$\frac{35}{n+1}$,
∵$\frac{35}{n+1}$必須是整數(shù),
∴n只能取6.
即樣本容量n=6.
工程師晏某被抽中的概率為$\frac{6}{36}$=$\frac{1}{6}$.
故答案為6,$\frac{1}{6}$.
點(diǎn)評(píng) 本題考查分層抽樣和系統(tǒng)抽樣,是一個(gè)用來(lái)認(rèn)識(shí)這兩種抽樣的一個(gè)題目,把兩種抽樣放在一個(gè)題目中考查,加以區(qū)分,是一個(gè)好題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5π | B. | 13π | C. | 17π | D. | 25π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ±1 | B. | $±\sqrt{2}$ | C. | $±\frac{{\sqrt{2}}}{2}$ | D. | $±\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 一個(gè)命題的逆命題為真,則它的逆否命題一定為真 | |
B. | 若“a>b”,則“a•c>b•c” | |
C. | “a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0” | |
D. | 一個(gè)命題的否命題為真,則它的逆命題一定為真 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -4 | B. | -6 | C. | 11 | D. | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com