箱子中裝有6張卡片,分別寫有1到6這6個(gè)整數(shù).從箱子中任意取出一張卡片,記下它的讀數(shù)x,然后放回箱子,第二次再?gòu)南渥又腥〕鲆粡埧ㄆ浵滤淖x數(shù)y,試求:
(Ⅰ)x+y是5的倍數(shù)的概率;
(Ⅱ)x-y是3的倍數(shù)的概率;
(Ⅲ)x,y中至少有一個(gè)5或6的概率.
【答案】分析:(Ⅰ)所有的實(shí)數(shù)對(duì)(x,y)共有6×6=36個(gè),用列舉法求得其中滿足x+y是5的倍數(shù)的實(shí)數(shù)對(duì)有7個(gè),由此求得故x+y
是5的倍數(shù)的概率.
(Ⅱ)用列舉法求得滿足x-y是3的倍數(shù)的實(shí)數(shù)對(duì)有12個(gè),由此求得x-y是3的倍數(shù)的概率.
(Ⅲ) 用列舉法求得x,y中至少有一個(gè)5或6的實(shí)數(shù)對(duì)共有19個(gè),由此求得 x,y中至少有一個(gè)5或6的概率.
解答:解:(Ⅰ)所有的實(shí)數(shù)對(duì)(x,y)共有6×6=36個(gè),滿足x+y是5的倍數(shù)的實(shí)數(shù)對(duì)有(1,4)、(4,1)、(2,3)、
(3,2)、(5,5),(4,6)、(6,4)共有7個(gè),
故x+y是5的倍數(shù)的概率等于
(Ⅱ)滿足x-y是3的倍數(shù)的實(shí)數(shù)對(duì)有(4,1)、(5,2)、(6,3)、(1,1)、(2,2)、(3,3)、(4,4)、(5,5)、(6,6),(1,4)、(2,5)、(3,6),共有12個(gè),故x-y是3的倍數(shù)的概率等于=
(Ⅲ) x,y中至少有一個(gè)5或6的實(shí)數(shù)對(duì)有(1,5)、(5,1)、(2,5)、(5,2)、(3,5)、(5,3)、
(4,5)、(5,4)、(5,5)(5,6)、(6,5)、(6,4)、(4,6)、(3,6)、(6,3)、(2,6)、
(6,2)、(1,6)、(6,1),(6,6)共有 20個(gè),
故 x,y中至少有一個(gè)5或6的概率等于 =
點(diǎn)評(píng):本題主要考查用列舉法計(jì)算可以列舉出基本事件和滿足條件的事件的概率,應(yīng)用列舉法來解題,是這一部分的最主要
思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•東營(yíng)一模)箱子中裝有6張卡片,分別寫有1到6這6個(gè)整數(shù).從箱子中任意取出一張卡片,記下它的讀數(shù)x,然后放回箱子,第二次再?gòu)南渥又腥〕鲆粡埧ㄆ,記下它的讀數(shù)y,試求:
(Ⅰ)x+y是5的倍數(shù)的概率;
(Ⅱ)x-y是3的倍數(shù)的概率;
(Ⅲ)x,y中至少有一個(gè)5或6的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:東營(yíng)一模 題型:解答題

箱子中裝有6張卡片,分別寫有1到6這6個(gè)整數(shù).從箱子中任意取出一張卡片,記下它的讀數(shù)x,然后放回箱子,第二次再?gòu)南渥又腥〕鲆粡埧ㄆ浵滤淖x數(shù)y,試求:
(Ⅰ)x+y是5的倍數(shù)的概率;
(Ⅱ)x-y是3的倍數(shù)的概率;
(Ⅲ)x,y中至少有一個(gè)5或6的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年江蘇省蘇州市五縣地區(qū)高二(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

箱子中裝有6張卡片,分別寫有1到6這6個(gè)整數(shù).從箱子中任意取出一張卡片,記下它的讀數(shù)x,然后放回箱子,第二次再?gòu)南渥又腥〕鲆粡埧ㄆ浵滤淖x數(shù)y,試求:
(Ⅰ)x+y是5的倍數(shù)的概率;
(Ⅱ)x-y是3的倍數(shù)的概率;
(Ⅲ)x,y中至少有一個(gè)5或6的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南通市海安縣實(shí)驗(yàn)中學(xué)高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

箱子中裝有6張卡片,分別寫有1到6這6個(gè)整數(shù).從箱子中任意取出一張卡片,記下它的讀數(shù)x,然后放回箱子,第二次再?gòu)南渥又腥〕鲆粡埧ㄆ,記下它的讀數(shù)y,試求:
(Ⅰ)x+y是5的倍數(shù)的概率;
(Ⅱ)x-y是3的倍數(shù)的概率;
(Ⅲ)x,y中至少有一個(gè)5或6的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案