4.若b>a>0,則下列不等式中一定成立的是(  )
A.$\frac{a+b}{2}$>b>$\sqrt{ab}$>aB.b>$\sqrt{ab}$>$\frac{a+b}{2}$>aC.b>a>$\frac{a+b}{2}$>$\sqrt{ab}$D.b>$\frac{a+b}{2}$>$\sqrt{ab}$>a

分析 根據(jù)不等式的性質(zhì)及基本不等式對進(jìn)行判斷,得出正確選項.

解答 解:由題意b>a>0,可得b>$\frac{a+b}{2}$,a<$\frac{a+b}{2}$,又由基本不等式可得$\frac{a+b}{2}$>$\sqrt{ab}$,且$\sqrt{ab}$>$\sqrt{a×a}$=a
對比四個選項可得b>$\frac{a+b}{2}$>$\sqrt{ab}$>a,
故選:D.

點評 本題考查基本不等式,求解的關(guān)鍵是理解并會運用基本不等式進(jìn)行變形比較大小,不等式的性質(zhì)的靈活運用對解本題也很重要.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖,在三棱錐S-ABC中,底面ABC為等邊三角形,SA=SB=$\sqrt{10}$,AB=2,平面SAB⊥平面ABC,則SC與平面ABC所成角的大小是60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.非零向量$\overrightarrow{m}$,$\overrightarrow{n}$的夾角的余弦值為$\frac{1}{3}$,且4|$\overrightarrow{m}$|=3|$\overrightarrow{n}$|,若$\overrightarrow{n}$⊥(t$\overrightarrow{m}$+$\overrightarrow{n}$),則實數(shù)t為(  )
A.4B.-4C.$\frac{4}{9}$D.-$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.經(jīng)調(diào)查統(tǒng)計,在某十字路中紅亮起時排隊等候的車輛數(shù)及相應(yīng)概率如下:
排隊車輛數(shù)0123≥4
概率x0.30.30.20.1
則該十字路口紅燈亮起時至多有2輛車排隊等候的概率是( 。
A.0.7B.0.6C.0.4D.0.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若有放回地從1,2,5,7中任取兩數(shù),則這兩數(shù)的和為奇數(shù)的概率為$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=sin(x+$\frac{π}{6}$)+sin(x-$\frac{π}{6}$)+cosx-1.
(1)求使f(x)≥0成立的x的取值集合;
(2)在△ABC中,角A、B、C的對邊分別為a、b、c,已知A為銳角,a=3$\sqrt{3}$,c=6,f(A)是函數(shù)f(x)在[0,$\frac{π}{2}$]上的最大值,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知x5(x+3)3=a8(x+1)8+a7(x+1)7+…+a1(x+1)+a0,求7a7+5a5+3a3+a1=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)a,b,c是正整數(shù),且a∈[70,80),b∈[80,90),c∈[90,100],當(dāng)數(shù)據(jù)a,b,c的方差最小時,a+b+c的值為( 。
A.252或253B.253或254C.254或255D.267或268

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.[示范高中]設(shè)不等式x2-2ax+a+2≤0的解集為M,集合N=[1,4],且M⊆N,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案