【題目】已知2件次品和3件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結(jié)束.

(1)求最后取出的是正品的概率;

(2)已知每檢測一件產(chǎn)品需要費用100元,設(shè)表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求的分布列和數(shù)學期望

【答案】(1) .

(2)分布列見解析, .

【解析】

(1)利用組合知識,由古典概型概率公式可得前件都是正品的概率以及件里有件次品件正品,第件是正品概率,由互斥事件概率公式可得結(jié)果;(2)的可能取值為,. 結(jié)合組合知識,利用古典概型概率公式根求出各隨機變量對應(yīng)的概率,從而可得分布列,進而利用期望公式可得的數(shù)學期望.

(1)最后取出的是正品對應(yīng)的事件是:①3件都是正品;

②前3件里有1件次品2件正品,第4件是正品.

前3件都是正品的概率是:

3件里有1件次品2件正品,第4件是正品概率是:

所以最后取出的是正品的概率:

(2)的可能取值為,,.

,,

,

的分布列為:

200

300

400

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一張坐標紙上已作出圓及點,折疊此紙片,使與圓周上某點重合,每次折疊都會留下折痕,設(shè)折痕與直線的交點為,令點的軌跡為曲線.

(1)求曲線的方程;

(2)若直線與軌跡交于、兩點,且直線與以為直徑的圓相切,若,求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線過點,其參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)若曲線相交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)當x∈(0,1)時,求f(x)的單調(diào)性;
(2)若h(x)=(x2﹣x)f(x),且方程h(x)=m有兩個不相等的實數(shù)根x1 , x2 . 求證:x1+x2>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小張經(jīng)營某一消費品專賣店,已知該消費品的進價為每件40元,該店每月銷售量(百件)與銷售單價x(元/件)之間的關(guān)系用下圖的一折線表示,職工每人每月工資為1000元,該店還應(yīng)交付的其它費用為每月10000元.

(1)把y表示為x的函數(shù);

(2)當銷售價為每件50元時,該店正好收支平衡(即利潤為零),求該店的職工人數(shù);

(3)若該店只有20名職工,問銷售單價定為多少元時,該專賣店可獲得最大月利潤?(注:利潤=收入-支出)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),(其中是自然對數(shù)的底數(shù)),

(1)求函數(shù)的單調(diào)區(qū)間;

(2)記

①當時,試判斷的導函數(shù)的零點個數(shù);

②求證:時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在(0,+∞)上的函數(shù)f(x),滿足f(mn)=f(m)+f(n)(m,n>0),且當x>1時,有f(x)>0.
①求證:f( )=f(m)﹣f(n);
②求證:f(x)在(0,+∞)上是增函數(shù);
③比較f( )與 的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且時,總有成立.

a的值;

判斷并證明函數(shù)的單調(diào)性;

上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的圓臺中,AC是下底面圓O的直徑,EF是上底面圓O′的直徑,F(xiàn)B是圓臺的一條母線.

(1)已知G,H分別為EC,F(xiàn)B的中點,求證:GH∥平面ABC;
(2)已知EF=FB= AC=2 ,AB=BC,求二面角F﹣BC﹣A的余弦值.

查看答案和解析>>

同步練習冊答案