函數(shù)y=
1-(
1
2
)
x
的定義域是( 。
A、[1,+∞)
B、(-∞,1]
C、[0,+∞)
D、(-∞,0]
考點(diǎn):指數(shù)函數(shù)單調(diào)性的應(yīng)用
專(zhuān)題:
分析:根據(jù)偶次被開(kāi)方數(shù)不小于0,可得1-(
1
2
)
x
≥0,根據(jù)指數(shù)函數(shù)的單調(diào)性解不等式可得答案.
解答: 解:由1-(
1
2
)
x
≥0得,(
1
2
)
x
≤1
,
解得:x≥0,
故函數(shù)y=
1-(
1
2
)
x
的定義域是[0,+∞),
故選:C
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)的定義域,指數(shù)不等式的解法,熟練掌握指數(shù)函數(shù)的單調(diào)性是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x軸上一點(diǎn)M(m,0),拋物線y2=16x上任意一點(diǎn)N,滿足|MN|≥|m|,則m的取值范圍是(  )
A、(-∞,0)
B、(-∞,8]
C、[0,8]
D、(0,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某商店已按每件80元的成本購(gòu)進(jìn)某商品1 000件,根據(jù)市場(chǎng)預(yù)測(cè),銷(xiāo)售價(jià)為每件100元時(shí)可全部售完,定價(jià)每提高1元時(shí)銷(xiāo)售量就減少5件,若要獲得最大利潤(rùn),銷(xiāo)售價(jià)應(yīng)定為每件多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知-1≤a≤1,-1≤b≤1,關(guān)于x的方程x2+ax+b2=0有實(shí)根的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(ωx-
π
6
),(x∈R,ω>0),且f(x)的最小正周期為6π
(1)求ω及f(
2
)的值;
(2)設(shè)α、β∈[0,
π
2
],f(3a+
π
2
)=
10
13
,f(3β+2π)=
6
5
求tan(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是偶函數(shù),當(dāng)x>0時(shí),f(x)=x+
4
x
,且當(dāng)x∈[-3,-1]時(shí),f(x)的值域是[n,m],則m-n的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)定義在實(shí)數(shù)集上的函數(shù)f(x),若存在實(shí)數(shù)x0,使得f(x0)=x0,那么稱(chēng)x0為函數(shù)f(x)的一個(gè)不動(dòng)點(diǎn).若對(duì)于任意實(shí)數(shù)b,函數(shù)f(x)=ax2+bx-b(a≠0)總有兩個(gè)相異的不動(dòng)點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:△ABC的三邊長(zhǎng)分別為a=3,b=3
7
,c=6,則三角形中的最大的角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖的程序框圖表示的算法的結(jié)果是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案