(2009•聊城一模)給出下列四個命題,其中正確的一個是( 。
分析:選項(xiàng)A,相關(guān)指數(shù)表示一元多項(xiàng)式回歸方程估測的可靠程度的高低,并不是預(yù)報(bào)變量對解釋變量的貢獻(xiàn)率是80%,從而進(jìn)行判斷;B:由獨(dú)立性檢驗(yàn)知識及兩個變量的2×2列聯(lián)表的意義進(jìn)行判斷即可;C:用相關(guān)指數(shù)R2來刻畫回歸效果,R2越大,說明模型的擬合效果越好;D:利用相關(guān)性系數(shù)r的意義去判斷.
解答:解:對于A,相關(guān)指數(shù)表示一元多項(xiàng)式回歸方程估測的可靠程度的高低,并不是預(yù)報(bào)變量對解釋變量的貢獻(xiàn)率是80%,故錯;
B:由獨(dú)立性檢驗(yàn)知識知兩個變量的2×2列聯(lián)表中,
對角線上數(shù)據(jù)的乘積相差越大,說明這兩個變量有關(guān)系成立的可能性就越大,故B不正確;
C:用相關(guān)指數(shù)R2來刻畫回歸效果,R2越大,說明模型的擬合效果越好,C不正確,
D:根據(jù)線性相關(guān)系數(shù)r的意義可知,當(dāng)r的絕對值越接近于1時,兩個隨機(jī)變量線性相關(guān)性越強(qiáng),所以D為真命題.
故選D.
點(diǎn)評:本題考查回歸分析,本題解題的關(guān)鍵是理解對于擬合效果好壞的幾個量的大小反映的擬合效果的好壞,本題是一個基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•聊城一模)已知拋物線y2=2px(p>0),過點(diǎn)M(2p,0)的直線與拋物線相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•聊城一模)兩個正數(shù)a,b的等差中項(xiàng)是5,等比中項(xiàng)是4.若a>b,則雙曲線
x2
a
-
y2
b
=1的漸近線方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•聊城一模)某校有一貧困學(xué)生因病需手術(shù)治療,但現(xiàn)在還差手術(shù)費(fèi)1.1萬元,團(tuán)委計(jì)劃在全校開展愛心募捐活動,為了增加活動的趣味性吸引更多學(xué)生參與,特舉辦“搖獎100%中獎”活動.凡捐款10元者,享受一次搖獎機(jī)會,如圖是搖獎機(jī)的結(jié)構(gòu)示意圖,搖獎機(jī)的旋轉(zhuǎn)盤是均勻的,扇形區(qū)域A,B,C,D,E所對應(yīng)的圓心角的比值分別為1:2:3:4:5.相應(yīng)區(qū)域分別設(shè)立一、二、三、四、五等獎,獎品分別為價(jià)值分別為5元、4元、3元、2元、1元的學(xué)習(xí)用品.搖獎時,轉(zhuǎn)動圓盤片刻,待停止后,固定指針指向哪個區(qū)域(邊線忽略不計(jì))即可獲得相應(yīng)價(jià)值的學(xué)習(xí)用品(如圖指針指向區(qū)域C,可獲得價(jià)值3元的學(xué)習(xí)用品).
(Ⅰ)預(yù)計(jì)全校捐款10元者將會達(dá)到1500人次,那么除去購買學(xué)習(xí)用品的款項(xiàng)后,剩余款項(xiàng)是否能幫助該生完成手術(shù)治療?
(Ⅱ)如果學(xué)生甲捐款20元,獲得了兩次搖獎機(jī)會,求他獲得價(jià)值6元的學(xué)習(xí)用品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•聊城一模)如圖,在四棱臺ABCD-A1B1C1D1中,下底ABCD是邊長為2的正方形,上底A1B1C1D1是邊長為1的正方形,側(cè)棱DD1⊥平面ABCD,DD1=2.
(Ⅰ)求證:B1B∥平面D1AC;
(Ⅱ)求二面角B1-AD1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•聊城一模)過點(diǎn)P(1,0)作曲線C:y=xk(x∈(0,+∞),k∈N*,k>1)的切線,切點(diǎn)為M1,設(shè)M1在x軸上的投影是點(diǎn)P1;又過點(diǎn)P1作曲線C的切線,切點(diǎn)為M2,設(shè)M2在x軸上的投影是點(diǎn)P2;…;依此下去,得到一系列點(diǎn)M1,M2,…Mn,…;設(shè)它們的橫坐標(biāo)a1,a2,…,
an…構(gòu)成數(shù)列為{an}.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:an≥1+
n
k-1
;
(Ⅲ)當(dāng)k=2時,令bn=
n
an
,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案