8.在△ABC中,若b=3,A=120°,三角形的面積$S=\frac{9}{4}\sqrt{3}$,則三角形外接圓的半徑為( 。
A.$\frac{2}{3}\sqrt{3}$B.3C.$\frac{4}{3}\sqrt{3}$D.6

分析 利用三角形面積計算公式可求c,利用余弦定理可求a,再利用正弦定理即可得出.

解答 解:∵$S=\frac{9}{4}\sqrt{3}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}×3×c×$$\frac{\sqrt{3}}{2}$,解得c=3.
∴由余弦定理可得:a2=b2+c2-2bccosA=32+32-2×3×3×cos120°=27,
解得a=3$\sqrt{3}$,
∴2R=$\frac{a}{sinA}$=$\frac{3\sqrt{3}}{\frac{\sqrt{3}}{2}}$=6,
解得R=3.
故選:B.

點評 本題考查了正弦定理、余弦定理、三角形面積計算公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知點P(t,t-1),t∈R,點E是圓x2+y2=$\frac{1}{4}$上的動點,點F是圓(x-3)2+(y+1)2=$\frac{9}{4}$上的動點,則|PF|-|PE|的最大值為( 。
A.2B.$\frac{5}{2}$C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若log2x+log2y=3,則2x+y的最小值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)$y=3sin(ωx+\frac{π}{3})$的最小正周期為π,將函數(shù)$y=3sin(ωx+\frac{π}{3})$的圖象向右平移$\frac{π}{2}$個單位長度,所得圖象對應(yīng)的函數(shù)(  )
A.在區(qū)間$[\frac{π}{12},\frac{7π}{12}]$上單調(diào)遞減B.在區(qū)間$[\frac{π}{12},\frac{7π}{12}]$上單調(diào)遞增
C.在區(qū)間$[-\frac{π}{6},\frac{π}{3}]$上單調(diào)遞減D.在區(qū)間$[-\frac{π}{6},\frac{π}{3}]$上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.將一顆骰子連續(xù)拋擲2次,則向上的點數(shù)之和為8的概率為( 。
A.$\frac{1}{9}$B.$\frac{5}{36}$C.$\frac{3}{18}$D.$\frac{1}{72}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在如圖所示的程序框圖中,若輸入的m=98,n=63,則輸出的結(jié)果為(  )
A.9B.8C.7D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=3sin(ωx+ϕ)$(ω>0,|ϕ|≤\frac{π}{2})$的部分圖象如圖所示,A,B兩點之間的距離為10,且f(2)=0,若將函數(shù)f(x)的圖象向右平移t(t>0)的單位長度后所得函數(shù)圖象關(guān)于y軸對稱,則t的最小值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某公司在迎新年晚會上舉行抽獎活動,有甲,乙兩個抽獎方案供員工選擇.
方案甲:員工最多有兩次抽獎機會,每次抽獎的中獎率均為$\frac{4}{5}$,第一次抽獎,若未中獎,則抽獎結(jié)束,若中獎,則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進(jìn)行第二次抽獎;若正面朝上,員工則須進(jìn)行第二次抽獎,且在第二次抽獎中,若中獎,則獲得1000元;若未中獎,則所獲得獎金為0元.
方案乙:員工連續(xù)三次抽獎,每次中獎率均為$\frac{2}{5}$,每次中獎均可獲得獎金400元.
(Ⅰ)求某員工選擇方案甲進(jìn)行抽獎所獲獎金X(元)的分布列;
(Ⅱ)試比較某員工選擇方案乙與選擇方案甲進(jìn)行抽獎,哪個方案更劃算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.要得到函數(shù)$y=sin({2x+\frac{π}{3}})$的圖象,只要將函數(shù)y=sinx的圖象( 。
A.先向左平移$\frac{π}{6}$個單位,再將各點橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$倍
B.先向右平移$\frac{π}{6}$個單位,再將各點橫坐標(biāo)變?yōu)樵瓉淼?倍
C.先向左平移$\frac{π}{3}$個單位,再將各點橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$倍
D.先向右平移$\frac{π}{3}$個單位,再將各點橫坐標(biāo)變?yōu)樵瓉淼?倍

查看答案和解析>>

同步練習(xí)冊答案