在平面直角坐標(biāo)系xOy中,已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,短軸長為2,離心率為.
(1)求橢圓C的方程;
(2)設(shè)A,B是橢圓C上的兩點(diǎn),△AOB的面積為.若A、B兩點(diǎn)關(guān)于x軸對稱,E為線段AB的中點(diǎn),射線OE交橢圓C于點(diǎn)P.如果=t,求實(shí)數(shù)t的值.
(1)+y2=1
(2)t=2或t=
(1)設(shè)橢圓C的方程為:(a>b>0),
,解得a=,b=1,
故橢圓C的方程為+y2=1.
(2)由于A、B兩點(diǎn)關(guān)于x軸對稱,可設(shè)直線AB的方程為x=m(-<x<,且m≠0).
將x=m代入橢圓方程得|y|=
所以SAOB=|m| .
解得m2或m2.①
=tt()=t(2m,0)=(mt,0),
又點(diǎn)P在橢圓上,所以=1.②
由①②得t2=4或t2.
又因?yàn)閠>0,所以t=2或t=.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2013·上海高考)如圖,已知雙曲線C1-y2=1,曲線C2:|y|=|x|+1.P是平面內(nèi)一點(diǎn).若存在過點(diǎn)P的直線與C1,C2都有共同點(diǎn),則稱P為“C1-C2型點(diǎn)”.

(1)在正確證明C1的左焦點(diǎn)是“C1-C2型點(diǎn)”時(shí),要使用一條過該焦點(diǎn)的直線,試寫出一條這樣的直線的方程(不要求驗(yàn)證).
(2)設(shè)直線y=kx與C2有公共點(diǎn),求證|k|>1,進(jìn)而證明原點(diǎn)不是“C1-C2型點(diǎn)”.
(3)求證:圓x2+y2=內(nèi)的點(diǎn)都不是“C1-C2型點(diǎn)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知,分別是橢圓的四個(gè)頂點(diǎn),△是一個(gè)邊長為2的等邊三角形,其外接圓為圓
(1)求橢圓及圓的方程;
(2)若點(diǎn)是圓劣弧上一動(dòng)點(diǎn)(點(diǎn)異于端點(diǎn),),直線分別交線段,橢圓于點(diǎn),,直線交于點(diǎn)
(。┣的最大值;
(ⅱ)試問:..,兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知左焦點(diǎn)為F(-1,0)的橢圓過點(diǎn)E(1,).過點(diǎn)P(1,1)分別作斜率為k1,k2的橢圓的動(dòng)弦AB,CD,設(shè)M,N分別為線段AB,CD的中點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若P為線段AB的中點(diǎn),求k1;
(3)若k1+k2=1,求證直線MN恒過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線 的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且雙曲線的離心率等于,則該雙曲線的方程為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)拋物線的焦點(diǎn)為,已知為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足,過弦的中點(diǎn)作拋物線準(zhǔn)線的垂線,垂足為,則的最大值為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的焦點(diǎn)是雙曲線的頂點(diǎn),雙曲線的焦點(diǎn)是橢圓的長軸頂點(diǎn),若兩曲線的離心率分別為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線=1的左支上一點(diǎn)M到右焦點(diǎn)F2的距離為18,N是線段MF2的中點(diǎn),O是坐標(biāo)原點(diǎn),則|ON|等于(  )
A.4B.2 C.1 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,右焦點(diǎn)到右頂點(diǎn)的距離為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與橢圓交于兩點(diǎn),是否存在實(shí)數(shù),使成立?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案