選修4-1:幾何證明選講
如圖,在△ABC中,BC邊上的點(diǎn)D滿(mǎn)足BD=2DC,以BD為直徑作圓O恰與CA相切于點(diǎn)A,過(guò)點(diǎn)B作BE⊥CA于點(diǎn)E,BE交圓D于點(diǎn)F.
(I)求∠ABC的度數(shù):
( II)求證:BD=4EF.

解:(Ⅰ)連接OA、AD.
∵AC是圓O的切線,OA=OB,
∴OA⊥AC,∠OAB=∠OBA=∠DAC,…(2分)
又AD是Rt△OAC斜邊上的中線,
∴AD=OD=DC=OA,
∴△AOD是等邊三角形,∴∠AOD=60°,
故∠ABC=∠AOD=30°.…(5分)
(Ⅱ)由(Ⅰ)可知,
在Rt△AEB中,∠EAB=∠ADB=60°,
∴EA=AB=×BD=BD,
EB=AB=×BD=BD,…(7分)
由切割線定理,得EA2=EF×EB,
BD2=EF×BD,
∴BD=4EF.…(10分)
分析:(Ⅰ)連接OA、AD.由AC是圓O的切線,OA=OB,知OA⊥AC,∠OAB=∠OBA=∠DAC,由AD是Rt△OAC斜邊上的中線,知AD=OD=DC=OA,由△AOD是等邊三角形,能求出∠ABC的度數(shù).
(Ⅱ)由(Ⅰ)可知,在Rt△AEB中,∠EAB=∠ADB=60°,由EA=AB=×BD=BD,知EB=AB=×BD=BD,由切割線定理,得EA2=EF×EB,由此能夠證明BD=4EF.
點(diǎn)評(píng):本題考查弦切角、與圓有關(guān)的比例線段的應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)選修4-1:幾何證明選講
如圖,圓O的直徑AB=10,弦DE⊥AB于點(diǎn)H,HB=2.
(1)求DE的長(zhǎng);
(2)延長(zhǎng)ED到P,過(guò)P作圓O的切線,切點(diǎn)為C,若PC=2
5
,求PD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)A、選修4-1:幾何證明選講 
如圖,PA與⊙O相切于點(diǎn)A,D為PA的中點(diǎn),
過(guò)點(diǎn)D引割線交⊙O于B,C兩點(diǎn),求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
已知矩陣M=
12
2x
的一個(gè)特征值為3,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.
D.選修4-5:不等式選講
求函數(shù)y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-1:幾何證明選講
自圓O外一點(diǎn)P引圓的一條切線PA,切點(diǎn)為A,M為PA的中點(diǎn),過(guò)點(diǎn)M引圓O的割線交該圓于B、C兩點(diǎn),且∠BMP=100°,∠BPC=40°,求∠MPB的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•徐州模擬)選修4-1:幾何證明選講
如圖,直線AB經(jīng)過(guò)圓上O的點(diǎn)C,并且OA=OB,CA=CB,圓O交于直線OB于E,D,連接EC,CD,若tan∠CED=
12
,圓O的半徑為3,求OA的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南京二模)選修4-1:幾何證明選講
如圖,圓O是等腰三角形ABC的外接圓,AB=AC,延長(zhǎng)BC到點(diǎn)D,使得CD=AC,連結(jié)AD交圓O于點(diǎn)E,連結(jié)BE與AC交于點(diǎn)F,求證:AE2=EF•BE.

查看答案和解析>>

同步練習(xí)冊(cè)答案