16.已知集合P={x|1<3x≤9},Q={x∈Z|y=ln(-2x2+7x)},則P∩Q=(  )
A.{1}B.{1,2}C.{2,3}D.{1,2,3}

分析 化簡(jiǎn)集合P、Q,根據(jù)交集的定義寫出P∩Q即可.

解答 解:集合P={x|1<3x≤9}={x|0<x≤2},
Q={x∈Z|y=ln(-2x2+7x)}={x∈Z|-2x2+7x>0}={1,2,3},
則P∩Q={1,2}.
故選:B.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某同學(xué)從區(qū)間[-1,1]隨機(jī)抽取2n個(gè)數(shù)x1,x2,…,xn,y1,y2,…,yn,構(gòu)成n個(gè)數(shù)對(duì)(x1,y1),(x2,y2),…(xn,yn),該同學(xué)用隨機(jī)模擬的方法估計(jì)n個(gè)數(shù)對(duì)中兩數(shù)的平方和小于1(即落在以原點(diǎn)為圓心,1為半徑的圓內(nèi))的個(gè)數(shù),則滿足上述條件的數(shù)對(duì)約有$\frac{nπ}{4}$個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖所示,是一個(gè)組合體的三視圖,圖中四邊形是邊長(zhǎng)為2的正方形,圓的直徑為2,那么這個(gè)組合體的表面積是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在單調(diào)遞增的等差數(shù)列{an}中,a3,a7,a15成等比數(shù)列,前5項(xiàng)之和等于20.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}=\frac{2}{{{a_n}{a_{n+1}}}}$,記數(shù)列{bn}的前n項(xiàng)和為Tn,求使${T_n}≤\frac{24}{25}$成立的n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=2lnx-x2
(1)求函數(shù)f(x)在x=1處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列已知數(shù)列{an}的前n項(xiàng)和是Sn,且Sn+$\frac{1}{3}$an=1(n∈N+).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log4(1-Sn+1)(n∈N+),Tn=$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+…+$\frac{{1}_{\;}}{_{n}_{n+1}}$,求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積等于( 。
A.10cm3B.20cm3C.30cm3D.40cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓$C:\frac{x^2}{16}+\frac{y^2}{7}=1$,F(xiàn)為橢圓的右焦點(diǎn),B為橢圓的上頂點(diǎn),P是橢圓上一動(dòng)點(diǎn).
(1)求|OP|2+|PF|2的取值范圍
(2)已知直線l:x+y=1,點(diǎn)P到直線l的距離為d,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)m、n是兩條不同的直線,α、β、γ是三個(gè)不同的平面,給出下列四個(gè)命題,其中正確命題的序號(hào)是( 。
①若m⊥α,n⊥α,則m⊥n;
②若α∥β,β∥γ,m⊥α,則m⊥γ;
③若m∥α,n∥α,則m∥n;
④若α⊥γ,β⊥γ,則α⊥β.
A.B.②③C.③④D.①④

查看答案和解析>>

同步練習(xí)冊(cè)答案