8.若某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積等于( 。
A.10cm3B.20cm3C.30cm3D.40cm3

分析 由已知中的三視圖可得:該幾何體是一個(gè)以俯視圖為底面的三棱錐切去一個(gè)同底同高的三棱錐所得的組合體,進(jìn)而得到答案.

解答 解:由已知中的三視圖可得:
該幾何體是一個(gè)以俯視圖為底面的三棱錐切去一個(gè)同底同高的三棱錐所得的組合體,
故體積V=(1-$\frac{1}{3}$)×$\frac{1}{2}$×4×3×5=20cm3,
故選:B

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是棱柱的體積和表面積,棱錐的體積和表面積,簡(jiǎn)單幾何體的三視圖,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若0<x<1,則$\frac{1}{x}+\frac{2x}{1-x}$的最小值為( 。
A.$2\sqrt{2}$B.1+$2\sqrt{2}$C.2+$2\sqrt{2}$D.3+$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知過點(diǎn)A(-2,m)和B(m,4)的直線與直線2x+y-1=0平行,則m的值為-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合P={x|1<3x≤9},Q={x∈Z|y=ln(-2x2+7x)},則P∩Q=( 。
A.{1}B.{1,2}C.{2,3}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)$f(x)=\frac{1}{2}-{cos^2}x+\sqrt{3}sinxcosx$.
(1)求f(x)單調(diào)遞增區(qū)間;
(2)△ABC中,角A,B,C的對(duì)邊a,b,c滿足${b^2}+{c^2}-{a^2}>\sqrt{3}bc$,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.根據(jù)平面向量基本定理,若$\overrightarrow{e_1},\overrightarrow{e_2}$為一組基底,同一平面的向量$\overrightarrow a$可以被唯一確定地表示為$\overrightarrow a=x\overrightarrow{e_1}+y\overrightarrow{e_2}$,則向量$\overrightarrow a$與有序?qū)崝?shù)對(duì)(x,y)一一對(duì)應(yīng),稱(x,y)為向量$\overrightarrow a$在基底$\overrightarrow{e_1},\overrightarrow{e_2}$下的坐標(biāo);特別地,若$\overrightarrow{e_1},\overrightarrow{e_2}$分別為x,y軸正方向的單位向量$\overrightarrow i,\overrightarrow j$,則稱(x,y)為向量$\overrightarrow a$的直角坐標(biāo).
(I)據(jù)此證明向量加法的直角坐標(biāo)公式:若$\overrightarrow a=({x_1},{y_1}),\overrightarrow b=({x_2},{y_2})$,則$\overrightarrow a+\overrightarrow b=({x_1}+{x_2},{y_1}+{y_2})$;
(II)如圖,直角△OAB中,$∠AOB={90°},|\overrightarrow{OA}|=1,|\overrightarrow{OB}|=\sqrt{3}$,C點(diǎn)在AB上,且$\overrightarrow{OC}⊥\overrightarrow{AB}$,求向量$\overrightarrow{OC}$在基底$\overrightarrow{OA},\overrightarrow{OB}$下的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{x^2}{36}-\frac{y^2}{64}=1$上一點(diǎn)P到雙曲線的一個(gè)焦點(diǎn)距離為15,則點(diǎn)P到另外一個(gè)焦點(diǎn)的距離為(  )
A.3或27B.3C.27D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.一個(gè)袋中裝有大小相同的5個(gè)白球和3個(gè)紅球,現(xiàn)在不放回的取2次球,每次取出一個(gè)球,記“第1次拿出的是白球”為事件A,“第2次拿出的是白球”為事件B,則P(B|A)是$\frac{4}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知△ABC中,C=90°,AB=2AC,在斜邊AB上任取一點(diǎn)P,則滿足∠ACP≤30°的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案