【題目】在平面直角坐標(biāo)系xOy中.已知向量 、 ,| |=| |=1, =0,點(diǎn)Q滿足 = ( + ),曲線C={P| = cosθ+ sinθ,0≤θ≤2π},區(qū)域Ω={P|0<r≤| |≤R,r<R}.若C∩Ω為兩段分離的曲線,則( )
A.1<r<R<3
B.1<r<3≤R
C.r≤1<R<3
D.1<r<3<R
【答案】A
【解析】解:∵平面直角坐標(biāo)系xOy中.已知向量 、 ,| |=| |=1, =0,
不妨令 =(1,0), =(0,1),
則 = ( + )=( , ),
= cosθ+ sinθ=(cosθ,sinθ),
故P點(diǎn)的軌跡為單位圓,
Ω={P|(0<r≤| |≤R,r<R}表示的平面區(qū)域?yàn)椋?/span>
以Q點(diǎn)為圓心,內(nèi)徑為r,外徑為R的圓環(huán),
若C∩Ω為兩段分離的曲線,
則單位圓與圓環(huán)的內(nèi)外圓均相交,
故|OQ|﹣1<r<R<|OQ|+1,
∵|OQ|=2,
故1<r<R<3,
故選:A
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一中最強(qiáng)大腦社對(duì)高中學(xué)生的記憶力和判斷力進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù)
參考公式:,.
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程 ,預(yù)測記憶力為的同學(xué)的判斷力.
(2)若記憶力增加個(gè)單位,預(yù)測判斷力增加多少個(gè)單位?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一位數(shù)學(xué)老師在黑板上寫了三個(gè)向量,,,其中,都是給定的整數(shù).老師問三位學(xué)生這三個(gè)向量的關(guān)系,甲回答:“與平行,且與垂直”,乙回答:“與平行”,丙回答:“與不垂直也不平行”,最后老師發(fā)現(xiàn)只有一位學(xué)生判斷正確,由此猜測,的值不可能為( )
A. , B. , C. , D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校隨機(jī)抽取部分新生調(diào)查其上學(xué)所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中上學(xué)所需時(shí)間的范圍是,樣本數(shù)據(jù)分組為,,,,.
(1)求直方圖中x的值;
(2)如果上學(xué)所需時(shí)間不少于1小時(shí)的學(xué)生可申請?jiān)趯W(xué)校住宿,若該學(xué)校有600名新生,請估計(jì)新生中有多少名學(xué)生可以申請住宿;
(3)由頻率分布直方圖估計(jì)該校新生上學(xué)所需時(shí)間的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1 , F2分別是橢圓E:x2+ =1(0<b<1)的左、右焦點(diǎn),過點(diǎn)F1的直線交橢圓E于A、B兩點(diǎn),若|AF1|=3|F1B|,AF2⊥x軸,則橢圓E的方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是兩個(gè)不共線的非零向量.
(1)設(shè),,,那么當(dāng)實(shí)數(shù)t為何值時(shí),A,B,C三點(diǎn)共線;
(2)若,且與的夾角為60°,那么實(shí)數(shù)x為何值時(shí)的值最?最小值為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量=(4cos2(-),cosx+sinx),=(sinx,cosx-sinx),設(shè)f(x)=-1
(1)求滿足|f(x)|≤1的實(shí)數(shù)x的集合;
(2)若函數(shù)φ(x)=[f(2x)+tf(x)-tf(-x)]-(1+)在[-,]上的最大值為2,求實(shí)數(shù)t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F為拋物線C:y2=4x的焦點(diǎn),過點(diǎn)P(﹣1,0)的直線l交拋物線C于兩點(diǎn)A,B,點(diǎn)Q為線段AB的中點(diǎn),若|FQ|=2,則直線l的斜率等于 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com