已知奇函數(shù)f(x)在定義域[-2,2]上單調遞減,求滿足f(1-m)+f(1-m2)<0的實數(shù)m的取值范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

求下列各題中的函數(shù)f(x)的解析式.
(1) 已知f(+2)=x+4,求f(x);
(2) 已知f=lgx,求f(x);
(3) 已知函數(shù)y=f(x)滿足2f(x)+f=2x,x∈R且x≠0,求f(x);
(4) 已知f(x)是二次函數(shù),且滿足f(0)=1,f(x+1)=f(x)+2x,求f(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

判斷函數(shù)f(x)=ex在區(qū)間(0,+∞)上的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為常數(shù),且).
(1)當時,求函數(shù)的最小值(用表示);
(2)是否存在不同的實數(shù)使得,,并且,若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定義域為R的函數(shù)f(x)=是奇函數(shù).
(1)求a,b的值.
(2)用定義證明f(x)在(-∞,+∞)上為減函數(shù).
(3)若對于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)f(x)=a為常數(shù)且a∈(0,1).
(1)當a=時,求f;
(2)若x0滿足f[f(x0)]=x0,但f(x0)≠x0,則稱x0為f(x)的二階周期點.證明函數(shù)f(x)有且僅有兩個二階周期點,并求二階周期點x1,x2
(3)對于(2)中的x1,x2,設A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),記△ABC的面積為S(a),求S(a)在區(qū)間[,]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,其中是常數(shù).
(1))當時, 是奇函數(shù);
(2)當時,的圖像上不存在兩點,使得直線平行于軸.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

學校某研究性學習小組在對學生上課注意力集中情況的調查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時間(單位:分鐘)之間的關系滿足如圖所示的圖像,當時,圖像是二次函數(shù)圖像的一部分,其中頂點,過點;當時,圖像是線段,其中,根據專家研究,當注意力指數(shù)大于62時,學習效果最佳.

(1)試求的函數(shù)關系式;
(2)教師在什么時段內安排內核心內容,能使得學生學習效果最佳?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的定義域為,且的圖象連續(xù)不間斷. 若函數(shù)滿足:對于給定的),存在,使得,則稱具有性質.
(Ⅰ)已知函數(shù),,判斷是否具有性質,并說明理由;
(Ⅱ)已知函數(shù) 若具有性質,求的最大值;
(Ⅲ)若函數(shù)的定義域為,且的圖象連續(xù)不間斷,又滿足,
求證:對任意,函數(shù)具有性質.

查看答案和解析>>

同步練習冊答案