橢圓E:+=1(a>b>0)的焦點到直線x-3y=0的距離為,離心率為,拋物線G:y2=2px(p>0)的焦點與橢圓E的焦點重合;斜率為k的直線l過G的焦點與E交于A,B,與G交于C,D.
(1)求橢圓E及拋物線G的方程;
(2)是否存在學常數(shù)λ,使為常數(shù),若存在,求λ的值,若不存在,說明理由.
【答案】分析:(1)由點到直線的距離公式列式求出c的值,結合土偶眼離心率求出a的值,再由拋物線G:y2=2px(p>0)的焦點與橢圓E的焦點重合即可求得橢圓方程和拋物線方程;
(2)依次射出A,B,C,D四點的坐標,設出直線l的方程,聯(lián)立直線方程和圓錐曲線方程,利用根與系數(shù)關系分別寫出A,B兩點橫坐標的和與積,寫出C,D兩點橫坐標的和與積,利用弦長公式求出AB和CD的長度,代入后可求出使為常數(shù)的λ的值.
解答:解:(1)設E、G的公共焦點為F(c,0),由題意得,
聯(lián)立解得
所以橢圓E:,拋物線G:y2=8x.
(2)設A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).
直線l的方程為y=k(x-2),與橢圓E的方程聯(lián)立,得(1+5k2)x2-20k2x+20k2-5=0
△=400k4-20(5k2+1)(4k2-1)=20(k2+1)>0.

=
直線l的方程為y=k(x-2),
與拋物線G的方程聯(lián)立,得k2x2-(4k2+8)x+4k2=0.


=
要使為常數(shù),則20+=4,得
故存在,使為常數(shù).
點評:本題主要考查了曲線方程的求法,考查了直線與圓錐曲線的位置關系的應用,訓練了設而不求的解題思想方法,考查了弦長公式的用法,直線與圓錐曲線問題的特點是計算量比較大,要求考生具備較強的運算推理的能力,是難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖所示,已知A、B、C是橢圓E:=1(a>b>0)上的三點,其中點  

A的坐標為(2,0),BC過橢圓的中心O,且AC⊥BC,|BC|=2|AC|.

(1)求點C的坐標及橢圓E的方程;

(2)若橢圓E上存在兩點P、Q,使得∠PCQ的平分線總是垂直于x軸,試判斷向量是否共線,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年黑龍江省雞西市密山一中高三(下)第五次月考數(shù)學試卷(解析版) 題型:解答題

已知點F橢圓E:+=1(a>b>0)的右焦點,點M在橢圓E上,以M為圓心的圓與x軸切于點F,與y軸交于A、B兩點,且△ABM是邊長為2的正三角形;又橢圓E上的P、Q兩點關于直線l:y=x+n對稱.
(I)求橢圓E的方程;
(II)當直線l過點(0,)時,求直線PQ的方程;
(III)若點C是直線l上一點,且∠PCQ=,求△PCQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年天津市十二所重點中學高三聯(lián)考數(shù)學試卷2(文科)(解析版) 題型:解答題

已知點F橢圓E:+=1(a>b>0)的右焦點,點M在橢圓E上,以M為圓心的圓與x軸切于點F,與y軸交于A、B兩點,且△ABM是邊長為2的正三角形;又橢圓E上的P、Q兩點關于直線l:y=x+n對稱.
(I)求橢圓E的方程;
(II)當直線l過點(0,)時,求直線PQ的方程;
(III)若點C是直線l上一點,且∠PCQ=,求△PCQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年天津市十二所重點中學高三聯(lián)考數(shù)學試卷2(理科)(解析版) 題型:解答題

已知點F橢圓E:+=1(a>b>0)的右焦點,點M在橢圓E上,以M為圓心的圓與x軸切于點F,與y軸交于A、B兩點,且△ABM是邊長為2的正三角形;又橢圓E上的P、Q兩點關于直線l:y=x+n對稱.
(I)求橢圓E的方程;
(II)當直線l過點(0,)時,求直線PQ的方程;
(III)若點C是直線l上一點,且∠PCQ=,求△PCQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆黑龍江省高二上學期期中文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分12分) 已知橢圓E:=1(a>b>o)的離心率e=,且經(jīng)過點(,1),O為坐標原點。

  (Ⅰ)求橢圓E的標準方程;

 (Ⅱ)圓O是以橢圓E的長軸為直徑的圓,M是直線x=-4在x軸上方的一點,過M作圓O的兩條切線,切點分別為P、Q,當∠PMQ=60°時,求直線PQ的方程.

 

查看答案和解析>>

同步練習冊答案