A. | y=sin($\frac{x}{2}$+$\frac{π}{6}$) | B. | y=cos(2x+$\frac{π}{3}$) | C. | y=sin(2x-$\frac{π}{6}$) | D. | y=cos($\frac{x}{2}$-$\frac{π}{6}$) |
分析 由題意求出函數(shù)周期,可知滿足條件的函數(shù)是選項(xiàng)B或C,再由在[-$\frac{π}{6}$,$\frac{π}{3}$]上是增函數(shù)進(jìn)一步判斷只有C符合.
解答 解:由圖象的相鄰兩條對(duì)稱軸間的距離是$\frac{π}{2}$,可知$\frac{T}{2}=\frac{π}{2}$,T=π,選項(xiàng)B、C滿足.
由x∈[-$\frac{π}{6}$,$\frac{π}{3}$],得2x$+\frac{π}{3}$∈[0,π],函數(shù)y=cos(2x+$\frac{π}{3}$)為減函數(shù),不合題意.
由x∈[-$\frac{π}{6}$,$\frac{π}{3}$],得2x-$\frac{π}{6}$∈[$\frac{π}{2}$,$\frac{π}{2}$],函數(shù)y=sin(2x-$\frac{π}{6}$)為增函數(shù),符合合題意.
故選:C.
點(diǎn)評(píng) 本題考查三角函數(shù)的周期性及其求法,考查y=Asin(ωx+φ)型函數(shù)的圖象和性質(zhì),是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?φ∈R,函數(shù)f(x)=sin(2x+φ)都不是偶函數(shù) | |
B. | ?α,β∈R,使cos(α+β)=cosα+cosβ | |
C. | 向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-1,0),則$\overrightarrow{a}$在$\overrightarrow$方向上的投影為2 | |
D. | “|x|≤1”是“x≤1”的既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 9 | C. | 10 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2$\sqrt{3}$ | C. | 4$\sqrt{3}$ | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{e}$ | B. | $\frac{1}{e-1}$ | C. | 1-$\frac{1}{e}$ | D. | 1-$\frac{1}{e-1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2或$\frac{1}{2}$ | B. | 2 | C. | $\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (5,6] | B. | (3,5) | C. | (3,6] | D. | [5,6] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7+i | B. | 7-i | C. | 7+7i | D. | -7+7i |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com