5.集合A={a,b},B={0,1,2},從集合A到B的映射f:A→B滿足f(a)+f(b)=2,則這樣的映射f:A→B的個數(shù)是( 。
A.2B.3C.5D.8

分析 根據(jù)映射的定義,結(jié)合f(a)+f(b)=2進行討論即可.

解答 解:若f(a)+f(b)=2,則有三種可能:
①f(a)=0,f(b)=2,
②f(a)=2,f(b)=0,
③f(a)=1,f(b)=1.
此這樣的映射共有3個,
故選:B

點評 本題主要考查映射的應(yīng)用,根據(jù)映射的定義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列命題
①$\left.\begin{array}{l}{a⊥α}\\{b?α}\end{array}\right\}$⇒a⊥b;②$\left.\begin{array}{l}{a⊥α}\\{a∥b}\end{array}\right\}$⇒b⊥α;
③$\left.\begin{array}{l}{a⊥α}\\{b∥α}\end{array}\right\}$⇒a⊥b;④$\left.\begin{array}{l}{a⊥b}\\{a⊥b}\\{b?α}\\{c?α}\end{array}\right\}$⇒a⊥α;
⑤$\left.\begin{array}{l}{a∥α}\\{a⊥b}\end{array}\right\}$⇒b⊥α;⑥$\left.\begin{array}{l}{a⊥α}\\{b⊥a}\end{array}\right\}$⇒b∥α.
其中正確的命題個數(shù)是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個焦點分別為F1,F(xiàn)2,P是橢圓上一點,且|PF2|=$\frac{\sqrt{3}}{2}$|PF1|,則∠PF1F2的最大值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)是義在R上的奇函數(shù),且當x>0時,f(x)=x2+2x.
(1)求f(x)在R上的解析式;
(2)解不等式f(x2-2x)+f(3-2x2)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知集合A={x|(x-a)(x-a2-1)>0},B={x||x-3|≤1}.
(Ⅰ)若a=2,求A∩B;
(Ⅱ)若不等式x2+1≥kx恒成立時k的最小值為a,求(∁RA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)a,b是實數(shù),命題“?ab>0,都有a>0,b>0”的否定是( 。
A.?ab≤0,使得a≤0,b≤0B.?ab≤0,使得a≤0或b≤0
C.?ab>0,使得a≤0,b≤0D.?ab>0,使得a≤0或b≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知兩個等差數(shù)列{an},{bn}的前n和分別為Sn,Tn,且滿足$\frac{S_9}{T_7}=\frac{5}{3}$,求$\frac{a_5}{b_4}$=$\frac{35}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.條件甲:“a>0”是條件乙:“使得ax2-ax+1>0對一切x恒成立的a的取值范圍”的(  )條件.
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知Sn為數(shù)列{an}的前n項和,若an(4+cosnπ)=n(2-cosnπ),S2n=an2+bn,則ab等于(  )
A.$\frac{6}{25}$B.$\frac{16}{25}$C.$\frac{21}{25}$D.$\frac{24}{25}$

查看答案和解析>>

同步練習(xí)冊答案