【題目】如圖,在三棱柱中,是邊長(zhǎng)為4的正方形,平面平面,.

1)求二面角的余弦值;

2)在線段是否存在點(diǎn),使得?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】1.(2)存在,值為

【解析】

1)建立空間直角坐標(biāo)系,利用平面的法向量和平面的法向量,計(jì)算出二面角的余弦值.

2)首先利用求得點(diǎn)的坐標(biāo),由求得的值.

1)因?yàn)?/span>為正方形,所以.

因?yàn)槠矫?/span>ABC⊥平面,且垂直于這兩個(gè)平面的交線,所以平面.由題知,,所以.如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,則,,,設(shè)平面的法向量為,則,即,

,則,,所以.

同理可得,平面的法向量為,所以.由題知二面角為銳角,所以二面角的余弦值為.

2)存在.設(shè)是直線上一點(diǎn),且.所以.解得,.

所以.

,即.解得.

因?yàn)?/span>,所以在線段上存在點(diǎn),

使得.此時(shí),.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分14分)已知過(guò)原點(diǎn)的動(dòng)直線與圓 相交于不同的兩點(diǎn),

1)求圓的圓心坐標(biāo);

2)求線段的中點(diǎn)的軌跡的方程;

3)是否存在實(shí)數(shù),使得直線 與曲線只有一個(gè)交點(diǎn)?若存在,求出的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且asin B=-bsin.

(1)求A;

(2)若△ABC的面積S=c2,求sin C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)求函數(shù)的最小正周期;

2)求函數(shù)的單調(diào)遞增區(qū)間;

3)若把向右平移個(gè)單位得到函數(shù),求在區(qū)間上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,ABAD,ADBCAPABAD=1.

(Ⅰ)若直線PBCD所成角的大小為,BC的長(zhǎng);

(Ⅱ)求二面角BPDA的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】、、個(gè)數(shù)中一次隨機(jī)地取個(gè)數(shù),記所取的這個(gè)數(shù)的和為,則下列說(shuō)法錯(cuò)誤的是(

A.事件“”的概率為

B.事件“”的概率為

C.事件“”與事件“”為互斥事件

D.事件“”與事件“”互為對(duì)立事件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】稱直角坐標(biāo)系中縱橫坐標(biāo)均為整數(shù)的 點(diǎn)為格點(diǎn)”,稱一格點(diǎn)沿坐標(biāo)線到原點(diǎn)的最短路程為該點(diǎn)到原點(diǎn)的格點(diǎn)距離”,格點(diǎn)距離為定值的點(diǎn)的軌跡稱為格點(diǎn)圓”,該定值稱為格點(diǎn)圓的半徑,而每一條最短路程稱為一條半徑當(dāng)格點(diǎn)半徑為2005時(shí),格點(diǎn)圓的半徑有________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)紅直播平臺(tái)為確定下一季度的廣告投入計(jì)劃,收集了近6個(gè)月廣告投入量(單位:萬(wàn)元)和收益(單位:萬(wàn)元)的數(shù)據(jù)如下表:

月份

1

2

3

4

5

6

廣告投入量/萬(wàn)元

2

4

6

8

10

12

收益/萬(wàn)元

14.21

20.31

31.8

31.18

37.83

44.67

用兩種模型①,②分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計(jì)量的值:

7

30

1464.24

364

1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個(gè)模型?并說(shuō)明理由.

2)殘差絕對(duì)值大于2的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除:

(i)剔除的異常數(shù)據(jù)是哪一組?

(ii)剔除異常數(shù)據(jù)后,求出(1)中所選模型的回歸方程;

(iii)廣告投入量時(shí),(ii)中所得模型收益的預(yù)報(bào)值是多少?

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】建造一條防洪堤,其斷面為等腰梯形,腰與底邊成角為,防洪堤高記為(如圖),考慮到防洪堤堅(jiān)固性及石塊用料等因素,設(shè)計(jì)其斷面面積為平方米,為了使堤的上面與兩側(cè)面的水泥用料最省,則斷面的外周長(zhǎng))要最。

1)用表示、

2)將表示成的函數(shù),如限制在范圍內(nèi),最小為多少米?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案