5、設(shè)等差數(shù)列{an}的公差d不為零,a1=9d.若ak是a1與a2k的等比中項,則k=
4
分析:由ak是a1與a2k的等比中項,知ak2=a1a2k,由此可知k2-2k-8=0,從而得到k=4或k=-2(舍).
解答:解:因為ak是a1與a2k的等比中項,
則ak2=a1a2k,[9d+(k-1)d]2=9d•[9d+(2k-1)d],
又d≠0,則k2-2k-8=0,k=4或k=-2(舍去).
故選B.
點評:本題考查等差數(shù)列的性質(zhì)和應(yīng)用,解題時要認(rèn)真審題,仔細(xì)解答.屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn.若S2k=72,且ak+1=18-ak,則正整數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•山東)設(shè)等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}的前n項和為TnTn+
an+12n
(λ為常數(shù)).令cn=b2n(n∈N)求數(shù)列{cn}的前n項和Rn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項之和為Sn滿足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,已知(a4-1)3+2012(a4-1)=1(a2009-1)3+2012(a2009-1)=-1,則下列結(jié)論中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,若S9=81,S6=36,則S3=(  )

查看答案和解析>>

同步練習(xí)冊答案