設(shè)圓的面積為S,半徑為r,求面積S關(guān)于半徑r的變化率.

答案:略
解析:

解析:∵,


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在半徑為R、圓心角為
π3
的扇形金屬材料中剪出一個長方形EPQF,并且EP與∠AOB的平分線OC平行,設(shè)∠POC=θ.
(1)試寫出用θ表示長方形EPQF的面積S(θ)的函數(shù).
(2)現(xiàn)用EP和FQ作為母線并焊接起來,將長方形EFPQ制成圓柱的側(cè)面,能否從△OEF中直接剪出一個圓面作為圓柱形容器的底面?如果不能請說明理由.如果可能,求出側(cè)面積最大時容器的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在半徑為R、圓心角為
π3
的扇形金屬材料中剪出一個長方形EPQF,并且EP與∠AOB的平分線OC平行,設(shè)∠POC=θ.
(1)試寫出用θ表示長方形EPQF的面積S(θ)的函數(shù);
(2)在余下的邊角料中在剪出兩個圓(如圖所示),試問當(dāng)矩形EPQF的面積最大時,能否由這個矩形和兩個圓組成一個有上下底面的圓柱?如果可能,求出此時圓柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Q是圓O′:(x+1)2+y2=8上的動點(diǎn),F(xiàn)是拋物線y2=4x的焦點(diǎn),線段FQ的垂直平分線l交半徑O′Q于點(diǎn)P.
(1)求點(diǎn)P的軌跡C的方程;
(2)斜率為k的直線l過點(diǎn)(0,
k2+1
)且與軌跡C交于不同的兩點(diǎn)A,B,記△AB0的面積為S=f(k),若
OA
 • 
OB
=m
3
5
≤m≤
3
4
),求f(k)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)Q是圓O′:(x+1)2+y2=8上的動點(diǎn),F(xiàn)是拋物線y2=4x的焦點(diǎn),線段FQ的垂直平分線l交半徑O′Q于點(diǎn)P.
(1)求點(diǎn)P的軌跡C的方程;
(2)斜率為k的直線l過點(diǎn)(0,
k2+1
)且與軌跡C交于不同的兩點(diǎn)A,B,記△AB0的面積為S=f(k),若
OA
 • 
OB
=m
3
5
≤m≤
3
4
),求f(k)的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案